1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Selective autophagy degrades nuclear pore complexes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          The role of Atg proteins in autophagosome formation.

          Macroautophagy is mediated by a unique organelle, the autophagosome, which encloses a portion of cytoplasm for delivery to the lysosome. Autophagosome formation is dynamically regulated by starvation and other stresses and involves complicated membrane reorganization. Since the discovery of yeast Atg-related proteins, autophagosome formation has been dissected at the molecular level. In this review we describe the molecular mechanism of autophagosome formation with particular focus on the function of Atg proteins and the long-standing discussion regarding the origin of the autophagosome membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines.

            Epitope tagging of proteins as a strategy for the analysis of function, interactions and the subcellular distribution of proteins has become widely used. In the yeast Saccharomyces cerevisiae, molecular biological techniques have been developed that use a simple PCR-based strategy to introduce epitope tags to chromosomal loci (Wach et al., 1994). To further employ the power of this strategy, a variety of novel tags was constructed. These tags were combined with different selectable marker genes, resulting in PCR amplificable modules. Only one set of primers is required for the amplification of any module. Furthermore, convenient laboratory techniques are described that facilitate the genetic manipulations of yeast strains, as well as the analysis of the epitope-tagged proteins. Copyright 1999 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of long-lived proteins reveals exceptional stability of essential cellular structures.

              Intracellular proteins with long lifespans have recently been linked to age-dependent defects, ranging from decreased fertility to the functional decline of neurons. Why long-lived proteins exist in metabolically active cellular environments and how they are maintained over time remains poorly understood. Here, we provide a system-wide identification of proteins with exceptional lifespans in the rat brain. These proteins are inefficiently replenished despite being translated robustly throughout adulthood. Using nucleoporins as a paradigm for long-term protein persistence, we found that nuclear pore complexes (NPCs) are maintained over a cell's life through slow but finite exchange of even its most stable subcomplexes. This maintenance is limited, however, as some nucleoporin levels decrease during aging, providing a rationale for the previously observed age-dependent deterioration of NPC function. Our identification of a long-lived proteome reveals cellular components that are at increased risk for damage accumulation, linking long-term protein persistence to the cellular aging process. PAPERCLIP: Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nature Cell Biology
                Nat Cell Biol
                Springer Science and Business Media LLC
                1465-7392
                1476-4679
                February 2020
                February 6 2020
                February 2020
                : 22
                : 2
                : 159-166
                Article
                10.1038/s41556-019-0459-2
                32029894
                e0a7debe-6c8c-4364-b222-4f98ee46eb10
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article