9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TCGA-TCIA Impact on Radiogenomics Cancer Research: A Systematic Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the last decade, the development of radiogenomics research has produced a significant amount of papers describing relations between imaging features and several molecular ‘omic signatures arising from next-generation sequencing technology and their potential role in the integrated diagnostic field. The most vulnerable point of many of these studies lies in the poor number of involved patients. In this scenario, a leading role is played by The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA), which make available, respectively, molecular ‘omic data and linked imaging data. In this review, we systematically collected and analyzed radiogenomic studies based on TCGA-TCIA data. We organized literature per tumor type and molecular ‘omic data in order to discuss salient imaging genomic associations and limitations of each study. Finally, we outlined the potential clinical impact of radiogenomics to improve the accuracy of diagnosis and the prediction of patient outcomes in oncology.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM

          Motivation: High-throughput data is providing a comprehensive view of the molecular changes in cancer tissues. New technologies allow for the simultaneous genome-wide assay of the state of genome copy number variation, gene expression, DNA methylation and epigenetics of tumor samples and cancer cell lines. Analyses of current data sets find that genetic alterations between patients can differ but often involve common pathways. It is therefore critical to identify relevant pathways involved in cancer progression and detect how they are altered in different patients. Results: We present a novel method for inferring patient-specific genetic activities incorporating curated pathway interactions among genes. A gene is modeled by a factor graph as a set of interconnected variables encoding the expression and known activity of a gene and its products, allowing the incorporation of many types of omic data as evidence. The method predicts the degree to which a pathway's activities (e.g. internal gene states, interactions or high-level ‘outputs’) are altered in the patient using probabilistic inference. Compared with a competing pathway activity inference approach called SPIA, our method identifies altered activities in cancer-related pathways with fewer false-positives in both a glioblastoma multiform (GBM) and a breast cancer dataset. PARADIGM identified consistent pathway-level activities for subsets of the GBM patients that are overlooked when genes are considered in isolation. Further, grouping GBM patients based on their significant pathway perturbations divides them into clinically-relevant subgroups having significantly different survival outcomes. These findings suggest that therapeutics might be chosen that target genes at critical points in the commonly perturbed pathway(s) of a group of patients. Availability:Source code available at http://sbenz.github.com/Paradigm Contact: jstuart@soe.ucsc.edu Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multimodal Machine Learning: A Survey and Taxonomy

            Our experience of the world is multimodal - we see objects, hear sounds, feel texture, smell odors, and taste flavors. Modality refers to the way in which something happens or is experienced and a research problem is characterized as multimodal when it includes multiple such modalities. In order for Artificial Intelligence to make progress in understanding the world around us, it needs to be able to interpret such multimodal signals together. Multimodal machine learning aims to build models that can process and relate information from multiple modalities. It is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential. Instead of focusing on specific multimodal applications, this paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy. We go beyond the typical early and late fusion categorization and identify broader challenges that are faced by multimodal machine learning, namely: representation, translation, alignment, fusion, and co-learning. This new taxonomy will enable researchers to better understand the state of the field and identify directions for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set.

              To conduct a comprehensive analysis of radiologist-made assessments of glioblastoma (GBM) tumor size and composition by using a community-developed controlled terminology of magnetic resonance (MR) imaging visual features as they relate to genetic alterations, gene expression class, and patient survival. Because all study patients had been previously deidentified by the Cancer Genome Atlas (TCGA), a publicly available data set that contains no linkage to patient identifiers and that is HIPAA compliant, no institutional review board approval was required. Presurgical MR images of 75 patients with GBM with genetic data in the TCGA portal were rated by three neuroradiologists for size, location, and tumor morphology by using a standardized feature set. Interrater agreements were analyzed by using the Krippendorff α statistic and intraclass correlation coefficient. Associations between survival, tumor size, and morphology were determined by using multivariate Cox regression models; associations between imaging features and genomics were studied by using the Fisher exact test. Interrater analysis showed significant agreement in terms of contrast material enhancement, nonenhancement, necrosis, edema, and size variables. Contrast-enhanced tumor volume and longest axis length of tumor were strongly associated with poor survival (respectively, hazard ratio: 8.84, P = .0253, and hazard ratio: 1.02, P = .00973), even after adjusting for Karnofsky performance score (P = .0208). Proneural class GBM had significantly lower levels of contrast enhancement (P = .02) than other subtypes, while mesenchymal GBM showed lower levels of nonenhanced tumor (P < .01). This analysis demonstrates a method for consistent image feature annotation capable of reproducibly characterizing brain tumors; this study shows that radiologists' estimations of macroscopic imaging features can be combined with genetic alterations and gene expression subtypes to provide deeper insight to the underlying biologic properties of GBM subsets. © RSNA, 2013.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                29 November 2019
                December 2019
                : 20
                : 23
                : 6033
                Affiliations
                Author notes
                Author information
                https://orcid.org/0000-0003-3733-2095
                https://orcid.org/0000-0002-7594-7931
                https://orcid.org/0000-0002-2183-7577
                https://orcid.org/0000-0002-6490-7694
                Article
                ijms-20-06033
                10.3390/ijms20236033
                6929079
                31795520
                e0a8ca4c-0580-4b03-b34d-95d1fe41adee
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 October 2019
                : 28 November 2019
                Categories
                Review

                Molecular biology
                radiogenomics,cancer diagnosis,tcia,tcga,radiomics,genomics
                Molecular biology
                radiogenomics, cancer diagnosis, tcia, tcga, radiomics, genomics

                Comments

                Comment on this article