4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Parvalbumin interneuron in the ventral hippocampus functions as a discriminator in social memory

      , , , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability to identify strange conspecifics in societies is supported by social memory, which is vital for gregarious animals and humans. The function of hippocampal principal neurons in social memory has been extensively investigated; however, the nonprincipal neuronal mechanism underlying social memory remains unclear. Here, we first observed parallel changes in the ability for social recognition and the number of parvalbumin interneurons (PVIs) in the ventral CA1 (vCA1) after social isolation. Then, using tetanus toxin-mediated neuronal lesion and optogenetic stimulation approaches, we revealed that vCA1-PVIs specifically engaged in the retrieval stage of social memory. Finally, through the in vivo Ca 2+ imaging technique, we demonstrated that vCA1-PVIs exhibited higher activities when subjected mice approached a novel mouse than to a familiar one. These results highlight the crucial role of vCA1-PVIs for distinguishing novel conspecifics from other individuals and contribute to our understanding of the neuropathology of mental diseases with social memory deficits.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          DREADDs for Neuroscientists.

          Bryan Roth (2016)
          To understand brain function, it is essential that we discover how cellular signaling specifies normal and pathological brain function. In this regard, chemogenetic technologies represent valuable platforms for manipulating neuronal and non-neuronal signal transduction in a cell-type-specific fashion in freely moving animals. Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic tools are now commonly used by neuroscientists to identify the circuitry and cellular signals that specify behavior, perceptions, emotions, innate drives, and motor functions in species ranging from flies to nonhuman primates. Here I provide a primer on DREADDs highlighting key technical and conceptual considerations and identify challenges for chemogenetics going forward.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gamma frequency entrainment attenuates amyloid load and modifies microglia.

            Changes in gamma oscillations (20-50 Hz) have been observed in several neurological disorders. However, the relationship between gamma oscillations and cellular pathologies is unclear. Here we show reduced, behaviourally driven gamma oscillations before the onset of plaque formation or cognitive decline in a mouse model of Alzheimer's disease. Optogenetically driving fast-spiking parvalbumin-positive (FS-PV)-interneurons at gamma (40 Hz), but not other frequencies, reduces levels of amyloid-β (Aβ)1-40 and Aβ 1-42 isoforms. Gene expression profiling revealed induction of genes associated with morphological transformation of microglia, and histological analysis confirmed increased microglia co-localization with Aβ. Subsequently, we designed a non-invasive 40 Hz light-flickering regime that reduced Aβ1-40 and Aβ1-42 levels in the visual cortex of pre-depositing mice and mitigated plaque load in aged, depositing mice. Our findings uncover a previously unappreciated function of gamma rhythms in recruiting both neuronal and glial responses to attenuate Alzheimer's-disease-associated pathology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interneuron cell types are fit to function.

              Understanding brain circuits begins with an appreciation of their component parts - the cells. Although GABAergic interneurons are a minority population within the brain, they are crucial for the control of inhibition. Determining the diversity of these interneurons has been a central goal of neurobiologists, but this amazing cell type has so far defied a generalized classification system. Interneuron complexity within the telencephalon could be simplified by viewing them as elaborations of a much more finite group of developmentally specified cardinal classes that become further specialized as they mature. Our perspective emphasizes that the ultimate goal is to dispense with classification criteria and directly define interneuron types by function.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 13 2019
                August 13 2019
                August 13 2019
                July 29 2019
                : 116
                : 33
                : 16583-16592
                Article
                10.1073/pnas.1819133116
                6697894
                31358646
                e0ab349c-f5ce-4732-a179-5856d43fa70b
                © 2019

                Free to read

                https://www.pnas.org/site/aboutpnas/licenses.xhtml

                History

                Comments

                Comment on this article