83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wnt signaling in triple negative breast cancer is associated with metastasis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Triple Negative subset of (TN) Breast Cancers (BC), a close associate of the basal-like subtype (with limited discordance) is an aggressive form of the disease which convey unpredictable, and poor prognosis due to limited treatment options and lack of proven effective targeted therapies.

          Methods

          We conducted an expression study of 240 formalin-fixed, paraffin-embedded (FFPE) primary biopsies from two cohorts, including 130 TN tumors, to identify molecular mechanisms of TN disease.

          Results

          The annotation of differentially expressed genes in TN tumors contained an overrepresentation of canonical Wnt signaling components in our cohort and others. These observations were supported by upregulation of experimentally induced oncogenic Wnt/β-catenin genes in TN tumors, recapitulated using targets induced by Wnt3A. A functional blockade of Wnt/β-catenin pathway by either a pharmacological Wnt-antagonist, WntC59, sulidac sulfide, or β-catenin (functional read out of Wnt/β-catenin pathway) SiRNA mediated genetic manipulation demonstrated that a functional perturbation of the pathway is causal to the metastasis- associated phenotypes including fibronectin-directed migration, F-actin organization, and invasion in TNBC cells. A classifier, trained on microarray data from β-catenin transfected mammary cells, identified a disproportionate number of TNBC breast tumors as compared to other breast cancer subtypes in a meta-analysis of 11 studies and 1,878 breast cancer patients, including the two cohorts published here. Patients identified by the Wnt/β-catenin classifier had a greater risk of lung and brain, but not bone metastases.

          Conclusion

          These data implicate transcriptional Wnt signaling as a hallmark of TNBC disease associated with specific metastatic pathways.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          In silico prediction of protein-protein interactions in human macrophages

          Background: Protein-protein interaction (PPI) network analyses are highly valuable in deciphering and understanding the intricate organisation of cellular functions. Nevertheless, the majority of available protein-protein interaction networks are context-less, i.e. without any reference to the spatial, temporal or physiological conditions in which the interactions may occur. In this work, we are proposing a protocol to infer the most likely protein-protein interaction (PPI) network in human macrophages. Results: We integrated the PPI dataset from the Agile Protein Interaction DataAnalyzer (APID) with different meta-data to infer a contextualized macrophage-specific interactome using a combination of statistical methods. The obtained interactome is enriched in experimentally verified interactions and in proteins involved in macrophage-related biological processes (i.e. immune response activation, regulation of apoptosis). As a case study, we used the contextualized interactome to highlight the cellular processes induced upon Mycobacterium tuberculosis infection. Conclusion: Our work confirms that contextualizing interactomes improves the biological significance of bioinformatic analyses. More specifically, studying such inferred network rather than focusing at the gene expression level only, is informative on the processes involved in the host response. Indeed, important immune features such as apoptosis are solely highlighted when the spotlight is on the protein interaction level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of c-MYC as a target of the APC pathway.

            The adenomatous polyposis coli gene (APC) is a tumor suppressor gene that is inactivated in most colorectal cancers. Mutations of APC cause aberrant accumulation of beta-catenin, which then binds T cell factor-4 (Tcf-4), causing increased transcriptional activation of unknown genes. Here, the c-MYC oncogene is identified as a target gene in this signaling pathway. Expression of c-MYC was shown to be repressed by wild-type APC and activated by beta-catenin, and these effects were mediated through Tcf-4 binding sites in the c-MYC promoter. These results provide a molecular framework for understanding the previously enigmatic overexpression of c-MYC in colorectal cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genes that mediate breast cancer metastasis to the brain.

              The molecular basis for breast cancer metastasis to the brain is largely unknown. Brain relapse typically occurs years after the removal of a breast tumour, suggesting that disseminated cancer cells must acquire specialized functions to take over this organ. Here we show that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood-brain barrier crossing and brain colonization. We isolated cells that preferentially infiltrate the brain from patients with advanced disease. Gene expression analysis of these cells and of clinical samples, coupled with functional analysis, identified the cyclooxygenase COX2 (also known as PTGS2), the epidermal growth factor receptor (EGFR) ligand HBEGF, and the alpha2,6-sialyltransferase ST6GALNAC5 as mediators of cancer cell passage through the blood-brain barrier. EGFR ligands and COX2 were previously linked to breast cancer infiltration of the lungs, but not the bones or liver, suggesting a sharing of these mediators in cerebral and pulmonary metastases. In contrast, ST6GALNAC5 specifically mediates brain metastasis. Normally restricted to the brain, the expression of ST6GALNAC5 in breast cancer cells enhances their adhesion to brain endothelial cells and their passage through the blood-brain barrier. This co-option of a brain sialyltransferase highlights the role of cell-surface glycosylation in organ-specific metastatic interactions.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2013
                10 November 2013
                : 13
                : 537
                Affiliations
                [1 ]Edith Sanford Breast Cancer, Sanford Research, 2301 E 60th Street N, Sioux Falls, SD 57104, USA
                [2 ]Department of Internal Medicine, University of South Dakota, Vermillion, SD 57069, USA
                [3 ]AKESOgen, Inc., Atlanta, GA 30071, USA
                [4 ]Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
                [5 ]Winship Cancer Institute, Atlanta, GA 30322, USA
                [6 ]Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30022, USA
                [7 ]Department of Pathology, St. Mary’s Hospital, McGill University, Montreal, QC H3A 1G5, Canada
                [8 ]Indiana University Cancer Center, Indiana Cancer Pavilion, Indianapolis, IN 46202, USA
                [9 ]VM Institute of Research, Montréal, QC H3G 1L5, Canada
                [10 ]Current address: Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Atlanta, GA 30333, USA
                [11 ]Current address: Director of Pathology, Ville Marie Multidisciplinary Medical Centre, 1538, Sherbrooke Street W., Montréal, QC H3G 1L5, Canada
                [12 ]Current address: CHU Sainte-Justine Research Centre, Montréal, QC H3T 1C5, Canada
                [13 ]Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
                Article
                1471-2407-13-537
                10.1186/1471-2407-13-537
                4226307
                24209998
                e0ab5592-7c5b-44f3-b925-d23981963539
                Copyright © 2013 Dey et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 April 2013
                : 21 October 2013
                Categories
                Research Article

                Oncology & Radiotherapy
                breast cancer,triple negative,wnt,ffpe,microarray
                Oncology & Radiotherapy
                breast cancer, triple negative, wnt, ffpe, microarray

                Comments

                Comment on this article