10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative Stress in Radiation-Induced Cardiotoxicity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is a distinct increase in the risk of heart disease in people exposed to ionizing radiation (IR). Radiation-induced heart disease (RIHD) is one of the adverse side effects when people are exposed to ionizing radiation. IR may come from various forms, such as diagnostic imaging, radiotherapy for cancer treatment, nuclear disasters, and accidents. However, RIHD was mainly observed after radiotherapy for chest malignant tumors, especially left breast cancer. Radiation therapy (RT) has become one of the main ways to treat all kinds of cancer, which is used to reduce the recurrence of cancer and improve the survival rate of patients. The potential cause of radiation-induced cardiotoxicity is unclear, but it may be relevant to oxidative stress. Oxidative stress, an accumulation of reactive oxygen species (ROS), disrupts intracellular homeostasis through chemical modification and damages proteins, lipids, and DNA; therefore, it results in a series of related pathophysiological changes. The purpose of this review was to summarise the studies of oxidative stress in radiotherapy-induced cardiotoxicity and provide prevention and treatment methods to reduce cardiac damage.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Free radicals, oxidative stress, and antioxidants in human health and disease

          Free radicals and other reactive oxygen species (ROS) are constantly formed in the human body. Free-radical mechanisms have been implicated in the pathology of several human diseases, including cancer, atherosclerosis, malaria, and rheumatoid arthritis and neurodegenerative diseases. For example, the superoxide radical (O2 ·−) and hydrogen peroxide (H2O2) are known to be generated in the brain and nervous system in vivo, and several areas of the human brain are rich in iron, which appears to be easily mobilizable in a form that can stimulate free-radical reactions. Antioxidant defenses to remove O2 ·− and H2O2 exist. Superoxide dismutases (SOD) remove O2 ·− by greatly accelerating its conversion to H2O2. Catalases in peroxisomes convert H2O2 into water and O2 and help to dispose of H2O2 generated by the action of the oxidase enzymes that are located in these organelles. Other important H2O2-removing enzymes in human cells are the glutathione peroxidases. When produced in excess, ROS can cause tissue injury. However, tissue injury can itself cause ROS generation (e.g., by causing activation of phagocytes or releasing transition metal ions from damaged cells), which may (or may not, depending on the situation) contribute to a worsening of the injury. Assessment of oxidative damage to biomolecules by means of emerging technologies based on products of oxidative damage to DNA (e.g., 8-hydroxydeoxyguanosine), lipids (e.g., isoprostanes), and proteins (altered amino acids) would not only advance our understanding of the underlying mechanisms but also facilitate supplementation and intervention studies designed and conducted to test antioxidant efficacy in human health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vitamin E consumption and the risk of coronary heart disease in men.

            The oxidative modification of low-density lipoproteins increases their incorporation into the arterial intima, an essential step in atherogenesis. Although dietary antioxidants, such as vitamin C, carotene, and vitamin E, have been hypothesized to prevent coronary heart disease, prospective epidemiologic data are sparse. In 1986, 39,910 U.S. male health professionals 40 to 75 years of age who were free of diagnosed coronary heart disease, diabetes, and hypercholesterolemia completed detailed dietary questionnaires that assessed their usual intake of vitamin C, carotene, and vitamin E in addition to other nutrients. During four years of follow-up, we documented 667 cases of coronary disease. After controlling for age and several coronary risk factors, we observed a lower risk of coronary disease among men with higher intakes of vitamin E (P for trend = 0.003). For men consuming more than 60 IU per day of vitamin E, the multivariate relative risk was 0.64 (95 percent confidence interval, 0.49 to 0.83) as compared with those consuming less than 7.5 IU per day. As compared with men who did not take vitamin E supplements, men who took at least 100 IU per day for at least two years had a multivariate relative risk of coronary disease of 0.63 (95 percent confidence interval, 0.47 to 0.84). Carotene intake was not associated with a lower risk of coronary disease among those who had never smoked, but it was inversely associated with the risk among current smokers (relative risk, 0.30; 95 percent confidence interval, 0.11 to 0.82) and former smokers (relative risk, 0.60; 95 percent confidence interval, 0.38 to 0.94). In contrast, a high intake of vitamin C was not associated with a lower risk of coronary disease. These data do not prove a causal relation, but they provide evidence of an association between a high intake of vitamin E and a lower risk of coronary heart disease in men. Public policy recommendations with regard to the use of vitamin E supplements should await the results of additional studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta.

              In many physiological and disease processes, TGF-beta usurps branches of MAP kinase pathways in conjunction with Smads to induce apoptosis and epithelial-to-mesenchymal transition, but the detailed mechanism of how a MAP kinase cascade is activated by TGF-beta receptors is not clear. We report here that TRAF6 is specifically required for the Smad-independent activation of JNK and p38, and its carboxyl TRAF homology domain physically interacts with TGF-beta receptors. TGF-beta induces K63-linked ubiquitination of TRAF6 and promotes association between TRAF6 and TAK1. Our results indicate that TGF-beta activates JNK and p38 through a mechanism similar to that operating in the interleukin-1beta/Toll-like receptor pathway.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2020
                1 March 2020
                : 2020
                : 3579143
                Affiliations
                1Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
                2Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
                Author notes

                Academic Editor: Gianna Ferretti

                Author information
                https://orcid.org/0000-0001-9933-1210
                https://orcid.org/0000-0003-2676-3332
                Article
                10.1155/2020/3579143
                7071808
                32190171
                e0b42116-9d1c-4af8-a2ea-884e8efa6391
                Copyright © 2020 Zhang Ping et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 November 2019
                : 3 January 2020
                : 13 February 2020
                Funding
                Funded by: Wenzhou Municipal Science and Technology Bureau
                Award ID: Y20150114
                Award ID: Y20150191
                Funded by: National Natural Science Foundation of China
                Award ID: 81300115
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article