12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endoglin is a transforming growth factor-beta coreceptor with a crucial role in angiogenesis. A soluble form of endoglin is present in the circulation, but the role of soluble endoglin (sEndoglin) is poorly understood. In addition, the endoglin shedding mechanism is not known. Therefore, we examined the role of sEndoglin in tumor angiogenesis and the mechanism by which the extracellular domain of endoglin is released from the membrane.In colorectal cancer specimens, we observed high endothelial endoglin protein expression, accompanied with slightly lower sEndoglin levels in the circulation, compared with healthy controls. In vitro analysis using endothelial sprouting assays revealed that sEndoglin reduced spontaneous and vascular endothelial growth factor-induced endothelial sprouting. Human umbilical vascular endothelial cells were found to secrete high levels of sEndoglin. Endoglin shedding was inhibited by matrix metalloproteinase (MMP) inhibitors and MMP-14 short hairpin RNA, indicating MMP-14 as the major endoglin shedding protease. Coexpression of endoglin and membrane-bound MMP-14 led to a strong increase in sEndoglin levels. Endoglin shedding required a direct interaction between endoglin and membrane-localized MMP-14. Using cleavage site mutants, we determined that MMP-14 cleaved endoglin at a site in close proximity to the transmembrane domain. Taken together, this study shows that MMP-14 mediates endoglin shedding, which may regulate the angiogenic potential of endothelial cells in the (colorectal) tumor microenvironment.

          Related collections

          Author and article information

          Journal
          Cancer Res
          Cancer research
          American Association for Cancer Research (AACR)
          1538-7445
          0008-5472
          May 15 2010
          : 70
          : 10
          Affiliations
          [1 ] Departmentsof Molecular Cell Biology, Centre for Biomedical Genetics, Gastroenterology-Hepatology, and Surgery, Leiden University Medical Center, Leiden, the Netherlands. L.J.A.C.Hawinkels@LUMC.nl
          Article
          0008-5472.CAN-09-4466
          10.1158/0008-5472.CAN-09-4466
          20424116
          e0b5339f-a2f9-45cf-80c5-7f7bc2f6ff61
          (c)2010 AACR.
          History

          Comments

          Comment on this article