11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Global priorities for conservation across multiple dimensions of mammalian diversity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d984593e350">Approximately a quarter of all land mammals are currently threatened, mostly by human activities including habitat loss and harvesting. Here, we provide the first biological map of priority areas that captures all three dimensions of mammalian biodiversity: taxonomic, phylogenetic, and traits. We find limited overlap in priority regions across the three dimensions and with currently protected areas, indicating that conservation planning should consider multiple dimensions of biodiversity to maximize biodiversity conservation. Our complementarity-based prioritization provides a conservation solution that can be incorporated in future conservation planning efforts aimed at helping protect not only species but also evolutionary potential and ecosystem function. </p><p class="first" id="d984593e353">Conservation priorities that are based on species distribution, endemism, and vulnerability may underrepresent biologically unique species as well as their functional roles and evolutionary histories. To ensure that priorities are biologically comprehensive, multiple dimensions of diversity must be considered. Further, understanding how the different dimensions relate to one another spatially is important for conservation prioritization, but the relationship remains poorly understood. Here, we use spatial conservation planning to ( <i>i</i>) identify and compare priority regions for global mammal conservation across three key dimensions of biodiversity—taxonomic, phylogenetic, and traits—and ( <i>ii</i>) determine the overlap of these regions with the locations of threatened species and existing protected areas. We show that priority areas for mammal conservation exhibit low overlap across the three dimensions, highlighting the need for an integrative approach for biodiversity conservation. Additionally, currently protected areas poorly represent the three dimensions of mammalian biodiversity. We identify areas of high conservation priority among and across the dimensions that should receive special attention for expanding the global protected area network. These high-priority areas, combined with areas of high priority for other taxonomic groups and with social, economic, and political considerations, provide a biological foundation for future conservation planning efforts. </p>

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The status of the world's land and marine mammals: diversity, threat, and knowledge.

            Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Tree of Life Reveals Clock-Like Speciation and Diversification

              Genomic data are rapidly resolving the tree of living species calibrated to time, the timetree of life, which will provide a framework for research in diverse fields of science. Previous analyses of taxonomically restricted timetrees have found a decline in the rate of diversification in many groups of organisms, often attributed to ecological interactions among species. Here, we have synthesized a global timetree of life from 2,274 studies representing 50,632 species and examined the pattern and rate of diversification as well as the timing of speciation. We found that species diversity has been mostly expanding overall and in many smaller groups of species, and that the rate of diversification in eukaryotes has been mostly constant. We also identified, and avoided, potential biases that may have influenced previous analyses of diversification including low levels of taxon sampling, small clade size, and the inclusion of stem branches in clade analyses. We found consistency in time-to-speciation among plants and animals, ∼2 My, as measured by intervals of crown and stem species times. Together, this clock-like change at different levels suggests that speciation and diversification are processes dominated by random events and that adaptive change is largely a separate process.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                July 18 2017
                July 18 2017
                : 114
                : 29
                : 7641-7646
                Article
                10.1073/pnas.1706461114
                5530698
                28674013
                e0baa70b-de0d-4c90-a17c-b5c93c123af9
                © 2017

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article