6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibrosis in the Liver

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activated hepatic stellate cells (HSCs) and myofibroblasts are the main producers of extracellular matrix (ECM) proteins that form the fibrotic tissue that leads to hepatic fibrosis. Reactive oxygen species (ROS) can directly activate HSCs or induce inflammation or programmed cell death, especially pyroptosis, in hepatocytes, which in turn activates HSCs and fibroblasts to produce ECM proteins. Therefore, antioxidants and the nuclear factor E2-related factor-2 signaling pathway play critical roles in modulating the profibrogenic response. The master proinflammatory factors nuclear factor-κB (NF-κB) and the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome may coordinate to produce and activate profibrogenic molecules such as interleukins 1β and 18, which effectively activate HSCs, to produce large amounts of fibrotic proteins. Furthermore, the NLRP3 inflammasome activates pro-caspase 1, which is upregulated by NF-κB, to produce caspase 1, which induces pyroptosis via gasdermin and the activation of HSCs. ROS play central roles in the activation of the NF-κB and NLRP3 signaling pathways via IκB (an inhibitor of NF-κB) and thioredoxin-interacting protein, respectively, thereby linking the molecular mechanisms of oxidative stress, inflammation and fibrosis. Elucidating these molecular pathways may pave the way for the development of therapeutic tools to interfere with specific targets.

          Related collections

          Most cited references186

          • Record: found
          • Abstract: found
          • Article: not found

          ROS function in redox signaling and oxidative stress.

          Oxidative stress refers to elevated intracellular levels of reactive oxygen species (ROS) that cause damage to lipids, proteins and DNA. Oxidative stress has been linked to a myriad of pathologies. However, elevated ROS also act as signaling molecules in the maintenance of physiological functions--a process termed redox biology. In this review we discuss the two faces of ROS--redox biology and oxidative stress--and their contribution to both physiological and pathological conditions. Redox biology involves a small increase in ROS levels that activates signaling pathways to initiate biological processes, while oxidative stress denotes high levels of ROS that result in damage to DNA, protein or lipids. Thus, the response to ROS displays hormesis, given that the opposite effect is observed at low levels compared with that seen at high levels. Here, we argue that redox biology, rather than oxidative stress, underlies physiological and pathological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress and diabetic complications.

            Oxidative stress plays a pivotal role in the development of diabetes complications, both microvascular and cardiovascular. The metabolic abnormalities of diabetes cause mitochondrial superoxide overproduction in endothelial cells of both large and small vessels, as well as in the myocardium. This increased superoxide production causes the activation of 5 major pathways involved in the pathogenesis of complications: polyol pathway flux, increased formation of AGEs (advanced glycation end products), increased expression of the receptor for AGEs and its activating ligands, activation of protein kinase C isoforms, and overactivity of the hexosamine pathway. It also directly inactivates 2 critical antiatherosclerotic enzymes, endothelial nitric oxide synthase and prostacyclin synthase. Through these pathways, increased intracellular reactive oxygen species (ROS) cause defective angiogenesis in response to ischemia, activate a number of proinflammatory pathways, and cause long-lasting epigenetic changes that drive persistent expression of proinflammatory genes after glycemia is normalized ("hyperglycemic memory"). Atherosclerosis and cardiomyopathy in type 2 diabetes are caused in part by pathway-selective insulin resistance, which increases mitochondrial ROS production from free fatty acids and by inactivation of antiatherosclerosis enzymes by ROS. Overexpression of superoxide dismutase in transgenic diabetic mice prevents diabetic retinopathy, nephropathy, and cardiomyopathy. The aim of this review is to highlight advances in understanding the role of metabolite-generated ROS in the development of diabetic complications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Free radicals in the physiological control of cell function.

              At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, however, nitric oxide (NO), superoxide anion, and related reactive oxygen species (ROS) play an important role as regulatory mediators in signaling processes. Many of the ROS-mediated responses actually protect the cells against oxidative stress and reestablish "redox homeostasis." Higher organisms, however, have evolved the use of NO and ROS also as signaling molecules for other physiological functions. These include regulation of vascular tone, monitoring of oxygen tension in the control of ventilation and erythropoietin production, and signal transduction from membrane receptors in various physiological processes. NO and ROS are typically generated in these cases by tightly regulated enzymes such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. In a given signaling protein, oxidative attack induces either a loss of function, a gain of function, or a switch to a different function. Excessive amounts of ROS may arise either from excessive stimulation of NAD(P)H oxidases or from less well-regulated sources such as the mitochondrial electron-transport chain. In mitochondria, ROS are generated as undesirable side products of the oxidative energy metabolism. An excessive and/or sustained increase in ROS production has been implicated in the pathogenesis of cancer, diabetes mellitus, atherosclerosis, neurodegenerative diseases, rheumatoid arthritis, ischemia/reperfusion injury, obstructive sleep apnea, and other diseases. In addition, free radicals have been implicated in the mechanism of senescence. That the process of aging may result, at least in part, from radical-mediated oxidative damage was proposed more than 40 years ago by Harman (J Gerontol 11: 298-300, 1956). There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                15 December 2020
                December 2020
                : 9
                : 12
                : 1279
                Affiliations
                [1 ]Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico; erikaramost@ 123456gmail.com
                [2 ]Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Apartado Postal 14-740, Mexico City 07000, Mexico
                Author notes
                [* ]Correspondence: pmuriel@ 123456cinvestav.mx ; Tel.: +52-55-57473303; Fax: +52-55-57473394
                Author information
                https://orcid.org/0000-0002-6616-9760
                https://orcid.org/0000-0002-2236-6631
                Article
                antioxidants-09-01279
                10.3390/antiox9121279
                7765317
                33333846
                e0becf01-f633-45ff-b7e1-dcae15a2040d
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 October 2020
                : 11 December 2020
                Categories
                Review

                nrf2-keap1,inflammation,nf-κb,nlrp3 inflammasome,extracellular matrix,hepatic stellate cells,ros,liver damage

                Comments

                Comment on this article