25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Repair of Segmental Bone Defect Using Totally Vitalized Tissue Engineered Bone Graft by a Combined Perfusion Seeding and Culture System

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The basic strategy to construct tissue engineered bone graft (TEBG) is to combine osteoblastic cells with three dimensional (3D) scaffold. Based on this strategy, we proposed the “Totally Vitalized TEBG” (TV-TEBG) which was characterized by abundant and homogenously distributed cells with enhanced cell proliferation and differentiation and further investigated its biological performance in repairing segmental bone defect.

          Methods

          In this study, we constructed the TV-TEBG with the combination of customized flow perfusion seeding/culture system and β-tricalcium phosphate (β-TCP) scaffold fabricated by Rapid Prototyping (RP) technique. We systemically compared three kinds of TEBG constructed by perfusion seeding and perfusion culture (PSPC) method, static seeding and perfusion culture (SSPC) method, and static seeding and static culture (SSSC) method for their in vitro performance and bone defect healing efficacy with a rabbit model.

          Results

          Our study has demonstrated that TEBG constructed by PSPC method exhibited better biological properties with higher daily D-glucose consumption, increased cell proliferation and differentiation, and better cell distribution, indicating the successful construction of TV-TEBG. After implanted into rabbit radius defects for 12 weeks, PSPC group exerted higher X-ray score close to autograft, much greater mechanical property evidenced by the biomechanical testing and significantly higher new bone formation as shown by histological analysis compared with the other two groups, and eventually obtained favorable healing efficacy of the segmental bone defect that was the closest to autograft transplantation.

          Conclusion

          This study demonstrated the feasibility of TV-TEBG construction with combination of perfusion seeding, perfusion culture and RP technique which exerted excellent biological properties. The application of TV-TEBG may become a preferred candidate for segmental bone defect repair in orthopedic and maxillofacial fields.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Vascularization in tissue engineering.

          Tissue engineering has been an active field of research for several decades now. However, the amount of clinical applications in the field of tissue engineering is still limited. One of the current limitations of tissue engineering is its inability to provide sufficient blood supply in the initial phase after implantation. Insufficient vascularization can lead to improper cell integration or cell death in tissue-engineered constructs. This review will discuss the advantages and limitations of recent strategies aimed at enhancing the vascularization of tissue-engineered constructs. We will illustrate that combining the efforts of different research lines might be necessary to obtain optimal results in the field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biodegradable polymer scaffolds with well-defined interconnected spherical pore network.

            X Ma, J. Choi (2001)
            Scaffolding plays pivotal role in tissue engineering. In this work, a novel processing technique has been developed to create three-dimensional biodegradable polymer scaffolds with well-controlled interconnected spherical pores. Paraffin spheres were fabricated with a dispersion method, and were bonded together through a heat treatment to form a three-dimensional assembly in a mold. Biodegradable polymers such as PLLA and PLGA were dissolved in a solvent and cast onto the paraffin sphere assembly. After dissolving the paraffin, a porous polymer scaffold was formed. The fabrication parameters were studied in relation to the pore shape, interpore connectivity, pore wall morphology, and mechanical properties of the polymer scaffolds. The compressive modulus of the scaffolds decreased with increasing porosity. Longer heat treatment time of the paraffin spheres resulted in larger openings between the pores of the scaffolds. Foams of smaller pore size (100-200 microm) resulted in significantly lower compressive modulus than that of larger pore sizes (250-350 or 420-500 microm). The PLLA foams had a skeletal structure consisting of small platelets, whereas PLGA foams had homogeneous skeletal structure. The new processing technique can tailor the polymer scaffolds for a variety of potential tissue engineering applications because of the well-controlled architecture, interpore connectivity, and mechanical properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tissue engineering of bone: material and matrix considerations.

              When the normal physiologic reaction to fracture does not occur, such as in fracture nonunions or large-scale traumatic bone injury, surgical intervention is warranted. Autografts and allografts represent current strategies for surgical intervention and subsequent bone repair, but each possesses limitations, such as donor-site morbidity with the use of autograft and the risk of disease transmission with the use of allograft. Synthetic bone-graft substitutes, developed in an effort to overcome the inherent limitations of autograft and allograft, represent an alternative strategy. These synthetic graft substitutes, or matrices, are formed from a variety of materials, including natural and synthetic polymers, ceramics, and composites, that are designed to mimic the three-dimensional characteristics of autograft tissue while maintaining viable cell populations. Matrices also act as delivery vehicles for factors, antibiotics, and chemotherapeutic agents, depending on the nature of the injury to be repaired. This intersection of matrices, cells, and therapeutic molecules has collectively been termed tissue engineering. Depending on the specific application of the matrix, certain materials may be more or less well suited to the final structure; these include polymers, ceramics, and composites of the two. Each category is represented by matrices that can form either solid preformed structures or injectable forms that harden in situ. This article discusses the myriad design considerations that are relevant to successful bone repair with tissue-engineered matrices and provides an overview of several manufacturing techniques that allow for the actualization of critical design parameters.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                11 April 2014
                : 9
                : 4
                : e94276
                Affiliations
                [1 ]Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
                [2 ]School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, People's Republic of China
                University of Rochester, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LW XYM YZ. Performed the experiments: WL XYM YZ YFF XL. Analyzed the data: WL YYH ZW. Contributed reagents/materials/analysis tools: WL XL ZSM. Wrote the paper: LW XYM YZ YFF WL.

                Article
                PONE-D-13-48946
                10.1371/journal.pone.0094276
                3984127
                24728277
                e0db98e0-e7a5-4b7a-8cde-ebe5ee73f5ce
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 November 2013
                : 13 March 2014
                Page count
                Pages: 10
                Funding
                This work was supported by the Research Fund for the National Natural Science Foundation of China (No. 81371933) to Lin Wang and the National Natural Science Foundation of China (No. 31170913/C1002) to Wei Lei. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Bone
                Musculoskeletal System
                Biotechnology
                Bioengineering
                Biomedical Engineering
                Tissue Engineering
                Engineering and Technology
                Medicine and Health Sciences

                Uncategorized
                Uncategorized

                Comments

                Comment on this article