28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adeno-associated viral-vector-mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice.

      Stroke; a Journal of Cerebral Circulation
      Animals, Apoptosis, Cell Hypoxia, Dependovirus, genetics, Gene Expression Regulation, Genes, Reporter, Genetic Therapy, Genetic Vectors, therapeutic use, Hypoxia-Inducible Factor 1, alpha Subunit, biosynthesis, physiology, Infarction, Middle Cerebral Artery, therapy, Ischemic Attack, Transient, Lac Operon, Male, Mice, Neurons, pathology, Recombinant Fusion Proteins, Vascular Endothelial Growth Factor A

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exogenous delivery of vascular endothelial growth factor gene (VEGF) may provide a useful approach to the treatment of brain ischemia. We investigated the use of a hypoxia-responsive element to control VEGF expression given for neuroprotection. Three groups (n=36) of mice received AAVH9-VEGF, AAVH9-lacZ, or saline injection. Five days after gene transfer, the mice underwent 45 minutes of transient middle cerebral artery occlusion (tMCAO) followed by 1 to 7 days of reperfusion. Infarct volume was determined using cresyl violet staining; neuronal injury was examined using TUNEL, cleaved caspase-3, and fluoro-Jade B staining. Hypoxia-inducible factor-1 (HIF-1) was overexpressed after tMCAO in the ischemic hemisphere in the brain. Expression of lacZ, mediated by AAV-lacZ, was seen before and after tMCAO; however, AAVH9-lacZ-mediated lacZ expression was detected only after tMCAO. Infarct volume was smaller in the AAVH9-VEGF-transduced group compared with AAVH9-lacZ and saline groups (55% reduction, P<0.05) with reduced TUNEL (29+/-5% and 30+/-7% versus 12+/-3%, P<0.05), cleaved caspase-3 (20+/-3% and 21+/-5% versus 13+/-4%, P<0.05) and fluoro-Jade B (23+/-3% and 24+/-5% versus 12+/-5%, P<0.05) -positive neurons, respectively. Exogenous expression of VEGF through AAVH9-VEGF gene transfer 5 days before the onset of ischemia provides neuroprotection. Hypoxia-responsive element is a viable strategy of restricting VEGF expression to areas of ischemia to minimize adverse effects of therapy on adjacent normal parenchyma.

          Related collections

          Author and article information

          Comments

          Comment on this article