22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Space Shift Keying (SSK-) MIMO with Practical Channel Estimates

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we study the performance of space modulation for Multiple-Input-Multiple-Output (MIMO) wireless systems with imperfect channel knowledge at the receiver. We focus our attention on two transmission technologies, which are the building blocks of space modulation: i) Space Shift Keying (SSK) modulation; and ii) Time-Orthogonal-Signal-Design (TOSD-) SSK modulation, which is an improved version of SSK modulation providing transmit-diversity. We develop a single-integral closed-form analytical framework to compute the Average Bit Error Probability (ABEP) of a mismatched detector for both SSK and TOSD-SSK modulations. The framework exploits the theory of quadratic-forms in conditional complex Gaussian Random Variables (RVs) along with the Gil-Pelaez inversion theorem. The analytical model is very general and can be used for arbitrary transmit- and receive-antennas, fading distributions, fading spatial correlations, and training pilots. The analytical derivation is substantiated through Monte Carlo simulations, and it is shown, over independent and identically distributed (i.i.d.) Rayleigh fading channels, that SSK modulation is as robust as single-antenna systems to imperfect channel knowledge, and that TOSD-SSK modulation is more robust to channel estimation errors than the Alamouti scheme. Furthermore, it is pointed out that only few training pilots are needed to get reliable enough channel estimates for data detection, and that transmit- and receive-diversity of SSK and TOSD-SSK modulations are preserved even with imperfect channel knowledge.

          Related collections

          Author and article information

          Journal
          2012-01-23
          Article
          10.1109/TCOMM.2012.021712.100778
          1201.4793
          e0e3ea43-c0e9-4f0a-805a-46315d04af67

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          IEEE Transactions on Communications (to appear, 2012)
          cs.IT math.IT

          Numerical methods,Information systems & theory
          Numerical methods, Information systems & theory

          Comments

          Comment on this article