13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biological Function of HYOU1 in Tumors and Other Diseases

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Various stimuli induce an unfolded protein response to endoplasmic reticulum stress, accompanied by the expression of endoplasmic reticulum molecular chaperones. Hypoxia-upregulated 1 gene (HYOU1) is a chaperone protein located in the endoplasmic reticulum. HYOU1 expression was upregulated in many diseases, including various cancers and endoplasmic reticulum stress-related diseases. HYOU1 does not only play an important protective role in the occurrence and development of tumors, but also is a potential therapeutic target for cancer. HYOU1 may also be used as an immune stimulation adjuvant because of its anti-tumor immune response, and a molecular target for therapy of many endoplasmic reticulum-related diseases. In this article, we summarize the updates in HYOU1 and discuss the potential therapeutic effects of HYOU1.

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          The Hsp70 chaperone network

          The 70-kDa heat shock proteins (Hsp70s) are ubiquitous molecular chaperones that act in a large variety of cellular protein folding and remodelling processes. They function virtually at all stages of the life of proteins from synthesis to degradation and are thus crucial for maintaining protein homeostasis, with direct implications for human health. A large set of co-chaperones comprising J-domain proteins and nucleotide exchange factors regulate the ATPase cycle of Hsp70s, which is allosterically coupled to substrate binding and release. Moreover, Hsp70s cooperate with other cellular chaperone systems including Hsp90, Hsp60 chaperonins, small heat shock proteins and Hsp100 AAA+ disaggregases, together constituting a dynamic and functionally versatile network for protein folding, unfolding, regulation, targeting, aggregation and disaggregation, as well as degradation. In this Review we describe recent advances that have increased our understanding of the molecular mechanisms and working principles of the Hsp70 network. This knowledge showcases how the Hsp70 chaperone system controls diverse cellular functions, and offers new opportunities for the development of chemical compounds that modulate disease-related Hsp70 activities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ER stress and neurodegenerative diseases.

            Endoplasmic reticulum (ER) stress is caused by disturbances in the structure and function of the ER with the accumulation of misfolded proteins and alterations in the calcium homeostasis. The ER response is characterized by changes in specific proteins, causing translational attenuation, induction of ER chaperones and degradation of misfolded proteins. In case of prolonged or aggravated ER stress, cellular signals leading to cell death are activated. ER stress has been suggested to be involved in some human neuronal diseases, such as Parkinson's disease, Alzheimer's and prion disease, as well as other disorders. The exact contributions to and casual effects of ER stress in the various disease processes, however, are not known. Here we will discuss the possible role of ER stress in neurodegenerative diseases, and highlight current knowledge in this field that may reveal novel insight into disease mechanisms and help to design better therapies for these disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling

              Heat shock proteins 90 (Hsp90) and 70 (Hsp70) are two families of highly conserved ATP-dependent molecular chaperones that fold and remodel proteins. Both are important components of the cellular machinery involved in protein homeostasis and participate in nearly every cellular process. Although Hsp90 and Hsp70 each carry out some chaperone activities independently, they collaborate in other cellular remodeling reactions. In eukaryotes, both Hsp90 and Hsp70 function with numerous Hsp90 and Hsp70 co-chaperones. In contrast, bacterial Hsp90 and Hsp70 are less complex; Hsp90 acts independently of co-chaperones, and Hsp70 uses two co-chaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70, with an emphasis on bacterial chaperones. We describe the structure and conformational dynamics of these chaperones and their interactions with each other and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide the groundwork for understanding the more complex eukaryotic Hsp90 system and its modulation by Hsp90 co-chaperones.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                ott
                ott
                OncoTargets and therapy
                Dove
                1178-6930
                05 March 2021
                2021
                : 14
                : 1727-1735
                Affiliations
                [1 ]Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University , Changsha, 410013, Hunan, People’s Republic of China
                [2 ]University of South China , Hengyang, 421001, Hunan, People’s Republic of China
                Author notes
                Correspondence: Qianjin Liao; Yujuan Zhou Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University , 283 Tongzipo Road, Changsha, 410013, Hunan, People’s Republic of ChinaTel +86-731-88651681Fax +86-731-88651999 Email march-on@126.com; yujany_zhou@163.com
                Author information
                http://orcid.org/0000-0001-9320-3090
                Article
                297332
                10.2147/OTT.S297332
                7943547
                33707955
                e0e9dfd3-416f-4902-9999-05470890ad74
                © 2021 Rao et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 14 December 2020
                : 15 February 2021
                Page count
                Figures: 1, Tables: 1, References: 71, Pages: 9
                Funding
                Funded by: the National Natural Science Foundation of China;
                Funded by: the Natural Science Foundation of Hunan Province;
                Funded by: the Research Project of Health Commission of Hunan Province;
                Funded by: China Hunan Provincial Science and Technology Department;
                Funded by: Ascend Foundation of National cancer center;
                Funded by: Supported By Hunan Cancer Hospital Climb Plan;
                Funded by: By the Fundamental Research Funds for the Central Universities of Central South University;
                This work was supported in part by grants from the following sources: the National Natural Science Foundation of China (81972636, 81872281, 81772842), the Natural Science Foundation of Hunan Province (2020JJ5336, 2019JJ40175, 2019JJ40183 2018JJ1013), the Research Project of Health Commission of Hunan Province (202109031837, 20201020), China Hunan Provincial Science and Technology Department (2018SK7005), Ascend Foundation of National cancer center (NCC2018b68), and Supported By Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002) and By the Fundamental Research Funds for the Central Universities of Central South University (2019zzts832, 2019zzts833).
                Categories
                Review

                Oncology & Radiotherapy
                hyou1,tumor,endoplasmic reticulum,anti-tumor immunity
                Oncology & Radiotherapy
                hyou1, tumor, endoplasmic reticulum, anti-tumor immunity

                Comments

                Comment on this article