127
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histone H3 lysine 9 (H3-K9) methylation and DNA methylation are characteristic hallmarks of mammalian heterochromatin. H3-K9 methylation was recently shown to be a prerequisite for DNA methylation in Neurospora crassa and Arabidopsis thaliana. Currently, it is unknown whether a similar dependence exists in mammalian organisms.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.

          Heterochromatin protein 1 (HP1) is localized at heterochromatin sites where it mediates gene silencing. The chromo domain of HP1 is necessary for both targeting and transcriptional repression. In the fission yeast Schizosaccharomyces pombe, the correct localization of Swi6 (the HP1 equivalent) depends on Clr4, a homologue of the mammalian SUV39H1 histone methylase. Both Clr4 and SUV39H1 methylate specifically lysine 9 of histone H3 (ref. 6). Here we show that HP1 can bind with high affinity to histone H3 methylated at lysine 9 but not at lysine 4. The chromo domain of HP1 is identified as its methyl-lysine-binding domain. A point mutation in the chromo domain, which destroys the gene silencing activity of HP1 in Drosophila, abolishes methyl-lysine-binding activity. Genetic and biochemical analysis in S. pombe shows that the methylase activity of Clr4 is necessary for the correct localization of Swi6 at centromeric heterochromatin and for gene silencing. These results provide a stepwise model for the formation of a transcriptionally silent heterochromatin: SUV39H1 places a 'methyl marker' on histone H3, which is then recognized by HP1 through its chromo domain. This model may also explain the stable inheritance of the heterochromatic state.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Targeted mutation of the DNA methyltransferase gene results in embryonic lethality

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA.

              Methylation of mammalian DNA can lead to repression of transcription and alteration of chromatin structure. Recent evidence suggests that both effects are the result of an interaction between the methylated sites and methyl-CpG-binding proteins (MeCPs). MeCP1 has previously been detected in crude nuclear extracts. Here we report the identification, purification, and cDNA cloning of a novel MeCP called MeCP2. Unlike MeCP1, the new protein is able to bind to DNA that contains a single methyl-CpG pair. By staining with an antibody, we show that the distribution of MeCP2 along the chromosomes parallels that of methyl-CpG. In mouse, for example, MeCP2 is concentrated in pericentromeric heterochromatin, which contains a large fraction (about 40%) of all genomic 5-methylcytosine.
                Bookmark

                Author and article information

                Journal
                Curr Biol
                Current biology : CB
                Elsevier BV
                0960-9822
                0960-9822
                Jul 15 2003
                : 13
                : 14
                Affiliations
                [1 ] Research Institute of Molecular Pathology (IMP), The Vienna Biocenter, Dr. Bohrgasse 7, A-1030 Vienna, Austria.
                Article
                S0960-9822(03)00432-9
                10.1016/s0960-9822(03)00432-9
                12867029
                e0f18dc3-5d9b-4e93-b0da-644ba64b5d74

                Comments

                Comment on this article