35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structured Error Recovery for Codeword-Stabilized Quantum Codes

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Codeword stabilized (CWS) codes are, in general, non-additive quantum codes that can correct errors by an exhaustive search of different error patterns, similar to the way that we decode classical non-linear codes. For an n-qubit quantum code correcting errors on up to t qubits, this brute-force approach consecutively tests different errors of weight t or less, and employs a separate n-qubit measurement in each test. In this paper, we suggest an error grouping technique that allows to simultaneously test large groups of errors in a single measurement. This structured error recovery technique exponentially reduces the number of measurements by about 3^t times. While it still leaves exponentially many measurements for a generic CWS code, the technique is equivalent to syndrome-based recovery for the special case of additive CWS codes.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mixed State Entanglement and Quantum Error Correction

          Entanglement purification protocols (EPP) and quantum error-correcting codes (QECC) provide two ways of protecting quantum states from interaction with the environment. In an EPP, perfectly entangled pure states are extracted, with some yield D, from a mixed state M shared by two parties; with a QECC, an arbi- trary quantum state \(|\xi\rangle\) can be transmitted at some rate Q through a noisy channel \(\chi\) without degradation. We prove that an EPP involving one- way classical communication and acting on mixed state \(\hat{M}(\chi)\) (obtained by sharing halves of EPR pairs through a channel \(\chi\)) yields a QECC on \(\chi\) with rate \(Q=D\), and vice versa. We compare the amount of entanglement E(M) required to prepare a mixed state M by local actions with the amounts \(D_1(M)\) and \(D_2(M)\) that can be locally distilled from it by EPPs using one- and two-way classical communication respectively, and give an exact expression for \(E(M)\) when \(M\) is Bell-diagonal. While EPPs require classical communica- tion, QECCs do not, and we prove Q is not increased by adding one-way classical communication. However, both D and Q can be increased by adding two-way com- munication. We show that certain noisy quantum channels, for example a 50% depolarizing channel, can be used for reliable transmission of quantum states if two-way communication is available, but cannot be used if only one-way com- munication is available. We exhibit a family of codes based on universal hash- ing able toachieve an asymptotic \(Q\) (or \(D\)) of 1-S for simple noise models, where S is the error entropy. We also obtain a specific, simple 5-bit single- error-correcting quantum block code. We prove that {\em iff} a QECC results in high fidelity for the case of no error the QECC can be recast into a form where the encoder is the matrix inverse of the decoder.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Scheme for reducing decoherence in quantum computer memory.

            Shor (1995)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Elementary gates for quantum computation

              (2010)
              We show that a set of gates that consists of all one-bit quantum gates (U(2)) and the two-bit exclusive-or gate (that maps Boolean values \((x,y)\) to \((x,x \oplus y)\)) is universal in the sense that all unitary operations on arbitrarily many bits \(n\) (U(\(2^n\))) can be expressed as compositions of these gates. We investigate the number of the above gates required to implement other gates, such as generalized Deutsch-Toffoli gates, that apply a specific U(2) transformation to one input bit if and only if the logical AND of all remaining input bits is satisfied. These gates play a central role in many proposed constructions of quantum computational networks. We derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two-and three-bit quantum gates, the asymptotic number required for \(n\)-bit Deutsch-Toffoli gates, and make some observations about the number required for arbitrary \(n\)-bit unitary operations.
                Bookmark

                Author and article information

                Journal
                16 December 2009
                2010-03-08
                Article
                10.1103/PhysRevA.81.052337
                0912.3245
                e0f469b4-cdc1-4b99-8d6f-f7452e0fe0c3

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys. Rev. A 81, 052337 (2010)
                13 pages, 9 eps figures
                quant-ph cs.IT math.IT

                Comments

                Comment on this article