52
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Off to the Organelles - Killing Cancer Cells with Targeted Gold Nanoparticles

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gold nanoparticles (AuNPs) are excellent tools for cancer cell imaging and basic research. However, they have yet to reach their full potential in the clinic. At present, we are only beginning to understand the molecular mechanisms that underlie the biological effects of AuNPs, including the structural and functional changes of cancer cells. This knowledge is critical for two aspects of nanomedicine. First, it will define the AuNP-induced events at the subcellular and molecular level, thereby possibly identifying new targets for cancer treatment. Second, it could provide new strategies to improve AuNP-dependent cancer diagnosis and treatment.

          Our review summarizes the impact of AuNPs on selected subcellular organelles that are relevant to cancer therapy. We focus on the nucleus, its subcompartments, and mitochondria, because they are intimately linked to cancer cell survival, growth, proliferation and death. While non-targeted AuNPs can damage tumor cells, concentrating AuNPs in particular subcellular locations will likely improve tumor cell killing. Thus, it will increase cancer cell damage by photothermal ablation, mechanical injury or localized drug delivery. This concept is promising, but AuNPs have to overcome multiple hurdles to perform these tasks. AuNP size, morphology and surface modification are critical parameters for their delivery to organelles. Recent strategies explored all of these variables, and surface functionalization has become crucial to concentrate AuNPs in subcellular compartments.

          Here, we highlight the use of AuNPs to damage cancer cells and their organelles. We discuss current limitations of AuNP-based cancer research and conclude with future directions for AuNP-dependent cancer treatment.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes.

          We investigated the mechanism by which transferrin-coated gold nanoparticles (Au NP) of different sizes and shapes entered mammalian cells. We determined that transferrin-coated Au NP entered the cells via clathrin-mediated endocytosis pathway. The NPs exocytosed out of the cells in a linear relationship to size. This was different than the relationship between uptake and size. Furthermore, we developed a mathematical equation to predict the relationship of size versus exocytosis for different cell lines. These studies will provide guidelines for developing NPs for imaging and drug delivery applications, which will require "controlling" NP accumulation rate. These studies will also have implications in determining nanotoxicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview.

            Macrophages are one of the principal immune effector cells that play essential roles as secretory, phagocytic, and antigen-presenting cells in the immune system. In this study, we address the issue of cytotoxicity and immunogenic effects of gold nanoparticles on RAW264.7 macrophage cells. The cytotoxicity of gold nanoparticles has been correlated with a detailed study of their endocytotic uptake using various microscopy tools such as atomic force microscopy (AFM), confocal-laser-scanning microscopy (CFLSM), and transmission electron microscopy (TEM). Our findings suggest that Au(0) nanoparticles are not cytotoxic, reduce the production of reactive oxygen and nitrite species, and do not elicit secretion of proinflammatory cytokines TNF-alpha and IL1-beta, making them suitable candidates for nanomedicine. AFM measurements suggest that gold nanoparticles are internalized inside the cell via a mechanism involving pinocytosis, while CFLSM and TEM studies indicate their internalization in lysosomal bodies arranged in perinuclear fashion. Our studies thus underline the noncytotoxic, nonimmunogenic, and biocompatible properties of gold nanoparticles with the potential for application in nanoimmunology, nanomedicine, and nanobiotechnology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gold nanoparticles in biology: beyond toxicity to cellular imaging.

              Gold, enigmatically represented by the target-like design of its ancient alchemical symbol, has been considered a mystical material of great value for centuries. Nanoscale particles of gold now command a great deal of attention for biomedical applications. Depending on their size, shape, degree of aggregation, and local environment, gold nanoparticles can appear red, blue, or other colors. These visible colors reflect the underlying coherent oscillations of conduction-band electrons ("plasmons") upon irradiation with light of appropriate wavelengths. These plasmons underlie the intense absorption and elastic scattering of light, which in turn forms the basis for many biological sensing and imaging applications of gold nanoparticles. The brilliant elastic light-scattering properties of gold nanoparticles are sufficient to detect individual nanoparticles in a visible light microscope with approximately 10(2) nm spatial resolution. Despite the great excitement about the potential uses of gold nanoparticles for medical diagnostics, as tracers, and for other biological applications, researchers are increasingly aware that potential nanoparticle toxicity must be investigated before any in vivo applications of gold nanoparticles can move forward. In this Account, we illustrate the importance of surface chemistry and cell type for interpretation of nanoparticle cytotoxicity studies. We also describe a relatively unusual live cell application with gold nanorods. The light-scattering properties of gold nanoparticles, as imaged in dark-field optical microscopy, can be used to infer their positions in a living cell construct. Using this positional information, we can quantitatively measure the deformational mechanical fields associated with living cells as they push and pull on their local environment. The local mechanical environment experienced by cells is part of a complex feedback loop that influences cell metabolism, gene expression, and migration.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2015
                21 January 2015
                : 5
                : 4
                : 357-370
                Affiliations
                1. Department of Physiology, McGill University, Montreal, Canada;
                2. Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada.
                Author notes
                ✉ Corresponding author: Ursula Stochaj, Ph.D. Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, Canada, H3G 1Y6. Phone: 514-398-2949 Fax: 514-398-7452 E-mail: ursula.stochaj@ 123456mcgill.ca .

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov05p0357
                10.7150/thno.10657
                4329500
                25699096
                e0fc2c31-7f6d-481f-9159-06013fe08d8d
                © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.
                History
                : 27 September 2014
                : 16 December 2014
                Categories
                Review

                Molecular medicine
                gold nanoparticles,aunps,cancer cell imaging
                Molecular medicine
                gold nanoparticles, aunps, cancer cell imaging

                Comments

                Comment on this article