9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Possible complexity of the climatic event around 4300—3800 cal. BP in the central and western Mediterranean

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP

          The focus of this paper is the conversion of radiocarbon ages to calibrated (cal) ages for the interval 24,000–0 cal BP (Before Present, 0 cal BP = AD 1950), based upon a sample set of dendrochronologically dated tree rings, uranium-thorium dated corals, and varve-counted marine sediment. The14C age–cal age information, produced by many laboratories, is converted to Δ14C profiles and calibration curves, for the atmosphere as well as the oceans. We discuss offsets in measuredl4C ages and the errors therein, regional14C age differences, tree–coral14C age comparisons and the time dependence of marine reservoir ages, and evaluate decadalvs. single-year14C results. Changes in oceanic deepwater circulation, especially for the 16,000–11,000 cal BP interval, are reflected in the Δ14C values of INTCAL98.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Southward migration of the intertropical convergence zone through the Holocene.

            Titanium and iron concentration data from the anoxic Cariaco Basin, off the Venezuelan coast, can be used to infer variations in the hydrological cycle over northern South America during the past 14,000 years with subdecadal resolution. Following a dry Younger Dryas, a period of increased precipitation and riverine discharge occurred during the Holocene "thermal maximum." Since approximately 5400 years ago, a trend toward drier conditions is evident from the data, with high-amplitude fluctuations and precipitation minima during the time interval 3800 to 2800 years ago and during the "Little Ice Age." These regional changes in precipitation are best explained by shifts in the mean latitude of the Atlantic Intertropical Convergence Zone (ITCZ), potentially driven by Pacific-based climate variability. The Cariaco Basin record exhibits strong correlations with climate records from distant regions, including the high-latitude Northern Hemisphere, providing evidence for global teleconnections among regional climates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Kilimanjaro ice core records: evidence of holocene climate change in tropical Africa.

              Six ice cores from Kilimanjaro provide an approximately 11.7-thousand-year record of Holocene climate and environmental variability for eastern equatorial Africa, including three periods of abrupt climate change: approximately 8.3, approximately 5.2, and approximately 4 thousand years ago (ka). The latter is coincident with the "First Dark Age," the period of the greatest historically recorded drought in tropical Africa. Variable deposition of F- and Na+ during the African Humid Period suggests rapidly fluctuating lake levels between approximately 11.7 and 4 ka. Over the 20th century, the areal extent of Kilimanjaro's ice fields has decreased approximately 80%, and if current climatological conditions persist, the remaining ice fields are likely to disappear between 2015 and 2020.
                Bookmark

                Author and article information

                Journal
                The Holocene
                The Holocene
                SAGE Publications
                0959-6836
                1477-0911
                August 14 2009
                August 14 2009
                : 19
                : 6
                : 823-833
                Article
                10.1177/0959683609337360
                e11cea4e-d44a-4f91-a68d-ff8841b7e5b5
                © 2009
                History

                Comments

                Comment on this article