32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The potential for improving cardio-renal outcomes by sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for the EMPA-KIDNEY study

      Clinical Kidney Journal
      Oxford University Press
      cardiovascular, ckd, clinical trial, diabetic kidney disease, sglt-2 inhibitor

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT Diabetes is a common cause of chronic kidney disease (CKD), but in aggregate, non-diabetic diseases account for a higher proportion of cases of CKD than diabetes in many parts of the world. Inhibition of the renin–angiotensin system reduces the risk of kidney disease progression and treatments that lower blood pressure (BP) or low-density lipoprotein cholesterol reduce cardiovascular (CV) risk in this population. Nevertheless, despite such interventions, considerable risks for kidney and CV complications remain. Recently, large placebo-controlled outcome trials have shown that sodium-glucose co-transporter-2 (SGLT-2) inhibitors reduce the risk of CV disease (including CV death and hospitalization for heart failure) in people with type 2 diabetes who are at high risk of atherosclerotic disease, and these effects were largely independent of improvements in hyperglycaemia, BP and body weight. In the kidney, increased sodium delivery to the macula densa mediated by SGLT-2 inhibition has the potential to reduce intraglomerular pressure, which may explain why SGLT-2 inhibitors reduce albuminuria and appear to slow kidney function decline in people with diabetes. Importantly, in the trials completed to date, these benefits appeared to be maintained at lower levels of kidney function, despite attenuation of glycosuric effects, and did not appear to be dependent on ambient hyperglycaemia. There is therefore a rationale for studying the cardio-renal effects of SGLT-2 inhibition in people at risk of CV disease and hyperfiltration (i.e. those with substantially reduced nephron mass and/or albuminuria), irrespective of whether they have diabetes.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology and risk profile of heart failure.

          Heart failure (HF) is a major public health issue, with a prevalence of over 5.8 million in the USA, and over 23 million worldwide, and rising. The lifetime risk of developing HF is one in five. Although promising evidence shows that the age-adjusted incidence of HF may have plateaued, HF still carries substantial morbidity and mortality, with 5-year mortality that rival those of many cancers. HF represents a considerable burden to the health-care system, responsible for costs of more than $39 billion annually in the USA alone, and high rates of hospitalizations, readmissions, and outpatient visits. HF is not a single entity, but a clinical syndrome that may have different characteristics depending on age, sex, race or ethnicity, left ventricular ejection fraction (LVEF) status, and HF etiology. Furthermore, pathophysiological differences are observed among patients diagnosed with HF and reduced LVEF compared with HF and preserved LVEF, which are beginning to be better appreciated in epidemiological studies. A number of risk factors, such as ischemic heart disease, hypertension, smoking, obesity, and diabetes, among others, have been identified that both predict the incidence of HF as well as its severity. In this Review, we discuss key features of the epidemiology and risk profile of HF.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications.

            Sodium-glucose cotransporter-2 (SGLT2) inhibitors, including empagliflozin, dapagliflozin, and canagliflozin, are now widely approved antihyperglycemic therapies. Because of their unique glycosuric mechanism, SGLT2 inhibitors also reduce weight. Perhaps more important are the osmotic diuretic and natriuretic effects contributing to plasma volume contraction, and decreases in systolic and diastolic blood pressures by 4 to 6 and 1 to 2 mm Hg, respectively, which may underlie cardiovascular and kidney benefits. SGLT2 inhibition also is associated with an acute, dose-dependent reduction in estimated glomerular filtration rate by ≈5 mL·min(-1)·1.73 m(-2) and ≈30% to 40% reduction in albuminuria. These effects mirror preclinical observations suggesting that proximal tubular natriuresis activates renal tubuloglomerular feedback through increased macula densa sodium and chloride delivery, leading to afferent vasoconstriction. On the basis of reduced glomerular filtration, glycosuric and weight loss effects are attenuated in patients with chronic kidney disease (estimated glomerular filtration rate 30% reductions in cardiovascular mortality, overall mortality, and heart failure hospitalizations associated with empagliflozin, even though, by design, the hemoglobin A1c difference between the randomized groups was marginal. Aside from an increased risk of mycotic genital infections, empagliflozin-treated patients had fewer serious adverse events, including a lower risk of acute kidney injury. In light of the EMPA-REG OUTCOME results, some diabetes clinical practice guidelines now recommend that SGLT2 inhibitors with proven cardiovascular benefit be prioritized in patients with type 2 diabetes mellitus who have not achieved glycemic targets and who have prevalent atherosclerotic cardiovascular disease. With additional cardiorenal protection trials underway, sodium-related physiological effects of SGLT2 inhibitors and clinical correlates of natriuresis, such as the impact on blood pressure, heart failure, kidney protection, and mortality, will be a major management focus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis.

              Chronic kidney disease is characterised by low estimated glomerular filtration rate (eGFR) and high albuminuria, and is associated with adverse outcomes. Whether these risks are modified by diabetes is unknown. We did a meta-analysis of studies selected according to Chronic Kidney Disease Prognosis Consortium criteria. Data transfer and analyses were done between March, 2011, and June, 2012. We used Cox proportional hazards models to estimate the hazard ratios (HR) of mortality and end-stage renal disease (ESRD) associated with eGFR and albuminuria in individuals with and without diabetes. We analysed data for 1,024,977 participants (128,505 with diabetes) from 30 general population and high-risk cardiovascular cohorts and 13 chronic kidney disease cohorts. In the combined general population and high-risk cohorts with data for all-cause mortality, 75,306 deaths occurred during a mean follow-up of 8·5 years (SD 5·0). In the 23 studies with data for cardiovascular mortality, 21,237 deaths occurred from cardiovascular disease during a mean follow-up of 9·2 years (SD 4·9). In the general and high-risk cohorts, mortality risks were 1·2-1·9 times higher for participants with diabetes than for those without diabetes across the ranges of eGFR and albumin-to-creatinine ratio (ACR). With fixed eGFR and ACR reference points in the diabetes and no diabetes groups, HR of mortality outcomes according to lower eGFR and higher ACR were much the same in participants with and without diabetes (eg, for all-cause mortality at eGFR 45 mL/min per 1·73 m(2) [vs 95 mL/min per 1·73 m(2)], HR 1·35; 95% CI 1·18-1·55; vs 1·33; 1·19-1·48 and at ACR 30 mg/g [vs 5 mg/g], 1·50; 1·35-1·65 vs 1·52; 1·38-1·67). The overall interactions were not significant. We identified much the same findings for ESRD in the chronic kidney disease cohorts. Despite higher risks for mortality and ESRD in diabetes, the relative risks of these outcomes by eGFR and ACR are much the same irrespective of the presence or absence of diabetes, emphasising the importance of kidney disease as a predictor of clinical outcomes. US National Kidney Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                6275453
                10.1093/ckj/sfy090
                30524708
                http://creativecommons.org/licenses/by/4.0/

                Nephrology
                cardiovascular,ckd,clinical trial,diabetic kidney disease,sglt-2 inhibitor
                Nephrology
                cardiovascular, ckd, clinical trial, diabetic kidney disease, sglt-2 inhibitor

                Comments

                Comment on this article