13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      REEP6 deficiency leads to retinal degeneration through disruption of ER homeostasis and protein trafficking

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy. We recently identified mutations in REEP6, which encodes the receptor expression enhancing protein 6, in several families with autosomal recessive RP. REEP6 is related to the REEP and Yop1p family of ER shaping proteins and potential receptor accessory proteins, but the role of REEP6 in the retina is unknown. Here we characterize the disease mechanisms associated with loss of REEP6 function using a Reep6 knockout mouse generated by CRISPR/Cas9 gene editing. In control mice REEP6 was localized to the inner segment and outer plexiform layer of rod photoreceptors. The Reep6 -/- mice exhibited progressive photoreceptor degeneration from P20 onwards. Ultrastructural analyses at P20 by transmission electron microscopy and 3View serial block face scanning EM revealed an expansion of the distal ER in the Reep6 -/- rods and an increase in their number of mitochondria. Electroretinograms revealed photoreceptor dysfunction preceded degeneration, suggesting potential defects in phototransduction. There was no effect on the traffic of rhodopsin, Rom1 or peripherin/rds; however, the retinal guanylate cyclases GC1 and GC2 were severely affected in the Reep6 knockout animals, with almost undetectable expression. These changes correlated with an increase in C/EBP homologous protein (CHOP) expression and the activation of caspase 12, suggesting that ER stress contributes to cell death. Collectively, these data suggest that REEP6 plays an essential role in maintaining cGMP homeostasis though facilitating the stability and/or trafficking of guanylate cyclases and maintaining ER and mitochondrial homeostasis.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Perspective on genes and mutations causing retinitis pigmentosa.

          Exceptional progress has been made during the past two decades in identifying genes causing inherited retinal diseases such as retinitis pigmentosa. An inescapable consequence is that the relationship between genes, mutations, and clinical findings has become very complex. Success in identifying the causes of inherited retinal diseases has many implications, including a better understanding of the biological basis of vision and insights into the processes involved in retinal pathology. From a clinical point of view, there are two important questions arising from these developments: where do we stand today in finding disease-causing mutations in affected individuals, and what are the implications of this information for clinical practice? This perspective addresses these questions specifically for retinitis pigmentosa, but the observations apply generally to other forms of inherited eye disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network.

            Hereditary spastic paraplegias (HSPs; SPG1-45) are inherited neurological disorders characterized by lower extremity spastic weakness. More than half of HSP cases result from autosomal dominant mutations in atlastin-1 (also known as SPG3A), receptor expression enhancing protein 1 (REEP1; SPG31), or spastin (SPG4). The atlastin-1 GTPase interacts with spastin, a microtubule-severing ATPase, as well as with the DP1/Yop1p and reticulon families of ER-shaping proteins, and SPG3A caused by atlastin-1 mutations has been linked pathogenically to abnormal ER morphology. Here we investigated SPG31 by analyzing the distribution, interactions, and functions of REEP1. We determined that REEP1 is structurally related to the DP1/Yop1p family of ER-shaping proteins and localizes to the ER in cultured rat cerebral cortical neurons, where it colocalizes with spastin and atlastin-1. Upon overexpression in COS7 cells, REEP1 formed protein complexes with atlastin-1 and spastin within the tubular ER, and these interactions required hydrophobic hairpin domains in each of these proteins. REEP proteins were required for ER network formation in vitro, and REEP1 also bound microtubules and promoted ER alignment along the microtubule cytoskeleton in COS7 cells. A SPG31 mutant REEP1 lacking the C-terminal cytoplasmic region did not interact with microtubules and disrupted the ER network. These data indicate that the HSP proteins atlastin-1, spastin, and REEP1 interact within the tubularER membrane in corticospinal neurons to coordinate ER shaping and microtubule dynamics. Thus, defects in tubular ER shaping and network interactions with the microtubule cytoskeleton seem to be the predominant pathogenic mechanism of HSP.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phototransduction in mouse rods and cones.

              Phototransduction is the process by which light triggers an electrical signal in a photoreceptor cell. Image-forming vision in vertebrates is mediated by two types of photoreceptors: the rods and the cones. In this review, we provide a summary of the success in which the mouse has served as a vertebrate model for studying rod phototransduction, with respect to both the activation and termination steps. Cones are still not as well-understood as rods partly because it is difficult to work with mouse cones due to their scarcity and fragility. The situation may change, however.
                Bookmark

                Author and article information

                Journal
                Hum Mol Genet
                Hum. Mol. Genet
                hmg
                Human Molecular Genetics
                Oxford University Press
                0964-6906
                1460-2083
                15 July 2017
                05 May 2017
                05 May 2017
                : 26
                : 14
                : 2667-2677
                Affiliations
                [1 ]Department of Molecular and Human Genetics
                [2 ]Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
                [3 ]UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
                [4 ]Department of Ophthalmology
                [5 ]Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030-3411, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 7137985194; Fax: +1 7137985741; Email: ruichen@ 123456bcm.edu (R.C.); Tel: +44 2076086944; Fax: +44 2076086892; Email: michael.cheetham@ 123456ucl.ac.uk (M.E.C.)
                Article
                ddx149
                10.1093/hmg/ddx149
                5808736
                28475715
                e126934e-ca17-4690-b8f4-a4017819d8b1
                © The Author 2017. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 February 2017
                : 12 April 2017
                : 14 April 2017
                Page count
                Pages: 11
                Funding
                Funded by: Foundation Fighting Blindness 10.13039/100001116
                Award ID: BR-GE-0613-0618-BCM
                Funded by: National Eye Institute 10.13039/100000053
                Award ID: R01EY022356, R01EY020540
                Award ID: 5T32EY007102-23
                Funded by: Wellcome Trust 10.13039/100004440
                Award ID: 093445
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article