0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pitavastatin attenuates AGEs-induced mitophagy via inhibition of ROS generation in the mitochondria of cardiomyocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aimed to investigate whether pitavastatin protected against injury induced by advanced glycation end products products (AGEs) in neonatal rat cardiomyocytes, and to examine the underlying mechanisms. Cardiomyocytes of neonatal rats were incubated for 48 hours with AGEs (100μg/mL), receptor for advanced glycation end products (RAGE), antibody (1μg/mL) and pitavastatin (600 ng/mL). The levels of p62 and beclin1 were determined by Western blotting. Mitochondrial membrane potential (ΔΨm) and the generation of reactive oxygen species (ROS) were measured through the JC-1 and DCFH-DA. In the AGEs group, the expression of beclin1 was remarkably increased compared to the control group, while the expression of p62 was significantly decreased. AGEs also markedly decreased ΔΨm and significantly increased ROS compared with the control group. After treatment with RAGE antibody or pitavastatin, the level of beclin1 was markedly decreased compared with the AGEs group, but the level of p62 was remarkably increased. In the AGEs+ RAGE antibody group and AGEs+ pitavastatin group, ΔΨm was significantly increased and ROS was remarkably decreased compared with the AGEs group. In conclusion, AGEs-RAGE may induce autophagy of cardiomyocytes by generation of ROS and pitavastatin could protect against AGEs-induced injury against cardiomyocytes.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mitochondrial origin of postischemic arrhythmias.

            Recovery of the mitochondrial inner membrane potential (DeltaPsi(m)) is a key determinant of postischemic functional recovery of the heart. Mitochondrial ROS-induced ROS release causes the collapse of DeltaPsi(m) and the destabilization of the action potential (AP) through a mechanism involving a mitochondrial inner membrane anion channel (IMAC) modulated by the mitochondrial benzodiazepine receptor (mBzR). Here, we test the hypothesis that this mechanism contributes to spatiotemporal heterogeneity of DeltaPsi(m) during ischemia-reperfusion (IR), thereby promoting abnormal electrical activation and arrhythmias in the whole heart. High-resolution optical AP mapping was performed in perfused guinea pig hearts subjected to 30 minutes of global ischemia followed by reperfusion. Typical electrophysiological responses, including progressive AP shortening followed by membrane inexcitablity in ischemia and ventricular fibrillation upon reperfusion, were observed in control hearts. These responses were reduced or eliminated by treatment with the mBzR antagonist 4'-chlorodiazepam (4'-Cl-DZP), which blocks depolarization of DeltaPsi(m). When applied throughout the IR protocol, 4'-Cl-DZP blunted AP shortening and prevented reperfusion arrhythmias. Inhibition of ventricular fibrillation was also achieved by bolus infusion of 4'-Cl-DZP just before reperfusion. Conversely, treatment with an agonist of the mBzR that promotes DeltaPsi(m) depolarization exacerbated IR-induced electrophysiological changes and failed to prevent arrhythmias. The effects of these compounds were consistent with their actions on IMAC and DeltaPsi(m). These findings directly link instability of DeltaPsi(m) to the heterogeneous electrophysiological substrate of the postischemic heart and highlight the mitochondrial membrane as a new therapeutic target for arrhythmia prevention in ischemic heart disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Advanced glycation end products: role in pathology of diabetic cardiomyopathy.

              Increasing evidence demonstrates that advanced glycation end products (AGEs) play a pivotal role in the development and progression of diabetic heart failure, although there are numerous other factors that mediate the disease response. AGEs are generated intra- and extracellularly as a result of chronic hyperglycemia. Then, following the interaction with receptors for advanced glycation end products (RAGEs), a series of events leading to vascular and myocardial damage are elicited and sustained, which include oxidative stress, increased inflammation, and enhanced extracellular matrix accumulation resulting in diastolic and systolic dysfunction. Whereas targeting glycemic control and treating additional risk factors, such as obesity, dyslipidemia, and hypertension, are mandatory to reduce chronic complications and prolong life expectancy in diabetic patients, drug therapy tailored to reducing the deleterious effects of the AGE-RAGE interactions is being actively investigated and showing signs of promise in treating diabetic cardiomyopathy and associated heart failure. This review shall discuss the formation of AGEs in diabetic heart tissue, potential targets of glycation in the myocardium, and underlying mechanisms that lead to diabetic cardiomyopathy and heart failure along with the use of AGE inhibitors and breakers in mitigating myocardial injury.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Biomed Res
                J Biomed Res
                JBR
                Journal of Biomedical Research
                Editorial Department of Journal of Biomedical Research
                1674-8301
                2352-4685
                26 July 2018
                16 April 2018
                : 32
                : 4
                : 281-287
                Affiliations
                [1 ]. Department of Gerontology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
                [2 ]. Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
                [3 ]. Department of Cardioangiology, Shengze Hospital of Jiangsu Province, Suzhou, China.
                Author notes

                Δ These authors contributed equally to this work.

                Corresponding author: Professor Yan Guo, MD PhD, Department of Gerontology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China, Email: guoyan51@hotmail.com
                Article
                10.7555/JBR.31.20160116
                6117602
                29089470
                e14df4ef-2218-4e4a-bc03-d6113b360330
                © 2018 by the Journal of Biomedical Research. All rights reserved

                This is an open access article under the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited.

                History
                : 10 September 2016
                : 17 November 2016
                : 23 March 2017
                Categories
                Original Article

                advanced glycation end products (ages),receptor for advanced glycation end products (rage),pitavastatin,autophagy,mitochondrial oxidation,oxidative stress

                Comments

                Comment on this article