11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reciprocal communication between the lyase and synthase active sites of the tryptophan synthase bienzyme complex.

      Biochemistry
      Binding Sites, Escherichia coli, enzymology, Glycerophosphates, metabolism, Hydrogen-Ion Concentration, Indoles, Kinetics, Ligands, Multienzyme Complexes, Osmolar Concentration, Protein Conformation, Serine, Spectrum Analysis, Tryptophan Synthase

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is important to understand how the cleavage of indoleglycerol phosphate, which is catalyzed by the alpha subunits in the alpha 2 beta 2 bienzyme complex of tryptophan synthase, is modulated by the presence of L-serine in the beta subunits. Steady-state kinetic data, including the dependence of kcat on pH, allowed values to be assigned to each of the eight rate constants of the minimal catalytic mechanism. An ionizing group having an apparent pK value near 7.5 must be protonated for activity. The alpha active site ligands indolepropanol phosphate, glyceraldehyde 3-phosphate, and glycerol 3-phosphate increase both the affinity and the molar absorbance of L-serine and L-tryptophan bound to the beta active site. These effects prove that the alpha sites communicate with the beta sites over a distance of 30 A. 6-Nitroindole readily condenses with glyceraldehyde 3-phosphate, but not with L-serine. The turnover numbers for 6-nitroindoleglycerol phosphate and 6-nitroindole increased about 10-fold in both directions in the presence of L-serine bound to the beta 2 subunits. These data prove that the alpha and beta active sites communicate reciprocally and explain why the turnover number for the physiological reaction of indoleglycerol phosphate with L-serine greatly exceeds that of the cleavage reaction of indoleglycerol phosphate.

          Related collections

          Author and article information

          Comments

          Comment on this article