61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Differences in metabolic and mitogenic signalling of insulin glargine and insulin aspart B10 in rats

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims/hypothesis

          In vitro, insulin glargine (A21Gly,B31Arg,B32Arg human insulin) has an insulin receptor (IR) profile similar to that of human insulin, but a slightly higher affinity for the IGF-1 receptor (IGF1R). Insulin aspart B10 (B10Asp human insulin) (AspB10), the only insulin analogue with proven carcinogenic activity, has a greater affinity for IGF1R and IR, and a prolonged IR occupancy time. The pharmacological and signalling profile of therapeutic and suprapharmacological doses of glargine were analysed in different tissues of rats, and compared with human insulin and AspB10.

          Methods

          Male Wistar rats were injected s.c. with human insulin or insulin analogue at doses of 1 to 200 U/kg, and the effects on blood glucose and the phosphorylation status of IR, IGF1R, Akt and extracellular signal-regulated protein kinase 1/2 in muscle, fat, liver and heart samples were investigated.

          Results

          Glargine, AspB10 and human insulin lowered blood glucose, with the onset of action delayed with glargine. Glargine treatment resulted in phosphorylation levels of IR and Akt that were comparable with those achieved with human insulin, although delayed in time in some tissues. AspB10 treatment resulted in at least twofold higher phosphorylation levels and significantly longer duration of IR and Akt phosphorylation in most tissues. None of the insulin treatments resulted in detectable IGF1R phosphorylation in muscle or heart tissue, whereas intravenous injection of IGF-1 increased IGF1R phosphorylation.

          Conclusions/interpretation

          The IR signalling pattern of AspB10 in vivo is distinctly different from that of human insulin and insulin glargine, and might challenge the notion that activation of IGF1R plays a role in the observed carcinogenic effect of AspB10.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s00125-013-2923-z) contains peer-reviewed but unedited supplementary material, which is available to authorised users.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease.

          In mammals, the insulin receptor (IR) gene has acquired an additional exon, exon 11. This exon may be skipped in a developmental and tissue-specific manner. The IR, therefore, occurs in two isoforms (exon 11 minus IR-A and exon 11 plus IR-B). The most relevant functional difference between these two isoforms is the high affinity of IR-A for IGF-II. IR-A is predominantly expressed during prenatal life. It enhances the effects of IGF-II during embryogenesis and fetal development. It is also significantly expressed in adult tissues, especially in the brain. Conversely, IR-B is predominantly expressed in adult, well-differentiated tissues, including the liver, where it enhances the metabolic effects of insulin. Dysregulation of IR splicing in insulin target tissues may occur in patients with insulin resistance; however, its role in type 2 diabetes is unclear. IR-A is often aberrantly expressed in cancer cells, thus increasing their responsiveness to IGF-II and to insulin and explaining the cancer-promoting effect of hyperinsulinemia observed in obese and type 2 diabetic patients. Aberrant IR-A expression may favor cancer resistance to both conventional and targeted therapies by a variety of mechanisms. Finally, IR isoforms form heterodimers, IR-A/IR-B, and hybrid IR/IGF-IR receptors (HR-A and HR-B). The functional characteristics of such hybrid receptors and their role in physiology, in diabetes, and in malignant cells are not yet fully understood. These receptors seem to enhance cell responsiveness to IGFs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use.

            In recent years, analogs of human insulin have been engineered with the aim of improving therapy for people with diabetes. To ensure that the safety profile of the human hormone is not compromised by the molecular modifications, the toxico-pharmacological properties of insulin analogs should be carefully monitored. In this study, we compared the insulin and IGF-I receptor binding properties and metabolic and mitogenic potencies of insulin aspart (B28Asp human insulin), insulin lispro (B28Lys,B29Pro human insulin), insulin glargine (A21Gly,B31Arg,B32Arg human insulin), insulin detemir (NN304) [B29Lys(epsilon-tetradecanoyl), desB30 human insulin], and reference insulin analogs. Receptor affinities were measured using purified human receptors, insulin receptor dissociation rates were determined using Chinese hamster ovary cells overexpressing the human insulin receptor, metabolic potencies were evaluated using primary mouse adipocytes, and mitogenic potencies were determined in human osteosarcoma cells. Metabolic potencies correlated well with insulin receptor affinities. Mitogenic potencies in general correlated better with IGF-I receptor affinities than with insulin receptor off-rates. The 2 rapid-acting insulin analogs aspart and lispro resembled human insulin on all parameters, except for a slightly elevated IGF-I receptor affinity of lispro. In contrast, the 2 long-acting insulin analogs, glargine and detemir, differed significantly from human insulin. The combination of the B31B32diArg and A21Gly substitutions provided insulin glargine with a 6- to 8-fold increased IGF-I receptor affinity and mitogenic potency compared with human insulin. The attachment of a fatty acid chain to LysB29 provided insulin detemir with reduced receptor affinities and metabolic and mitogenic potencies but did not change the balance between mitogenic and metabolic potencies. The safety implications of the increased growth-stimulating potential of insulin glargine are unclear. The reduced in vitro potency of insulin detemir might explain why this analog is not as effective on a molar basis as human insulin in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved.

              The insulin receptor (IR) and the insulin-like growth factor I receptor (IGF-IR) have a highly homologous structure, but different biological effects. Insulin and IGF-I half-receptors can heterodimerize, leading to the formation of insulin/IGF-I hybrid receptors (Hybrid-Rs) that bind IGF-I with high affinity. As the IR exists in two isoforms (IR-A and IR-B), we evaluated whether the assembly of the IGF-IR with either IR-A or IR-B moieties may differently affect Hybrid-R signaling and biological role. Three different models were studied: (a) 3T3-like mouse fibroblasts with a disrupted IGF-IR gene (R(-) cells) cotransfected with the human IGF-IR and with either the IR-A or IR-B cDNA; (b) a panel of human cell lines variably expressing the two IR isoforms; and (c) HepG2 human hepatoblastoma cells predominantly expressing either IR-A or IR-B, depending on their differentiation state. We found that Hybrid-Rs containing IR-A (Hybrid-Rs(A)) bound to and were activated by IGF-I, IGF-II, and insulin. By binding to Hybrid-Rs(A), insulin activated the IGF-I half-receptor beta-subunit and the IGF-IR-specific substrate CrkII. In contrast, Hybrid-Rs(B) bound to and were activated with high affinity by IGF-I, with low affinity by IGF-II, and insignificantly by insulin. As a consequence, cell proliferation and migration in response to both insulin and IGFs were more effectively stimulated in Hybrid-R(A)-containing cells than in Hybrid-R(B)-containing cells. The relative abundance of IR isoforms therefore affects IGF system activation through Hybrid-Rs, with important consequences for tissue-specific responses to both insulin and IGFs.
                Bookmark

                Author and article information

                Contributors
                norbert.tennagels@sanofi.com
                Journal
                Diabetologia
                Diabetologia
                Diabetologia
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0012-186X
                1432-0428
                8 May 2013
                8 May 2013
                August 2013
                : 56
                : 8
                : 1826-1834
                Affiliations
                Sanofi-Aventis Deutschland GmbH, Building H821, Room 231, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
                Article
                2923
                10.1007/s00125-013-2923-z
                3699703
                23653049
                e15f4db7-409d-45c3-ac9e-0f8c781c5206
                © Springer-Verlag Berlin Heidelberg 2013
                History
                : 20 December 2012
                : 5 April 2013
                Categories
                Article
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2013

                Endocrinology & Diabetes
                akt,asp[b10] insulin,human insulin,igf-1 receptor,insulin glargine,insulin receptor,receptor phosphorylation

                Comments

                Comment on this article