0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA barcoding of native Caucasus herbal plants: potentials and limitations in complex groups and implications for phylogeographic patterns

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA barcoding has rapidly become a useful complementary tool in floristic investigations particularly for identifying specimens that lack diagnostic characters. Here, we assess the capability of three DNA barcode markers (chloroplast rpoB, accD and nuclear ITS) for correct species assignment in a floristic survey on the Caucasus. We focused on two herbal groups with potential for ornamental applications, namely orchids and asterids. On these two plant groups, we tested whether our selection of barcode markers allows identification of the “barcoding gap” in sequence identity and to distinguish between monophyletic species when employing distance-based methods. All markers successfully amplified most specimens, but we found that the rate of species-level resolution amongst selected markers largely varied in the two plant groups. Overall, for both lineages, plastid markers had a species-level assignment success rate lower than the nuclear ITS marker. The latter confirmed, in orchids, both the existence of a barcoding gap and that all accessions of the same species clustered together in monophyletic groups. Further, it also allowed the detection of a phylogeographic signal.The ITS marker resulted in its being the best performing barcode for asterids; however, none of the three tested markers showed high discriminatory ability. Even if ITS were revealed as the most promising plant barcode marker, we argue that the ability of this barcode for species assignment is strongly dependent on the evolutionary history of the investigated plant lineage.

          Related collections

          Most cited references 46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species

          Background The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL + matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. Methodology/Principal Findings Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. Conclusions The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants.

            A two-marker combination of plastid rbcL and matK has previously been recommended as the core plant barcode, to be supplemented with additional markers such as plastid trnH-psbA and nuclear ribosomal internal transcribed spacer (ITS). To assess the effectiveness and universality of these barcode markers in seed plants, we sampled 6,286 individuals representing 1,757 species in 141 genera of 75 families (42 orders) by using four different methods of data analysis. These analyses indicate that (i) the three plastid markers showed high levels of universality (87.1-92.7%), whereas ITS performed relatively well (79%) in angiosperms but not so well in gymnosperms; (ii) in taxonomic groups for which direct sequencing of the marker is possible, ITS showed the highest discriminatory power of the four markers, and a combination of ITS and any plastid DNA marker was able to discriminate 69.9-79.1% of species, compared with only 49.7% with rbcL + matK; and (iii) where multiple individuals of a single species were tested, ascriptions based on ITS and plastid DNA barcodes were incongruent in some samples for 45.2% of the sampled genera (for genera with more than one species sampled). This finding highlights the importance of both sampling multiple individuals and using markers with different modes of inheritance. In cases where it is difficult to amplify and directly sequence ITS in its entirety, just using ITS2 is a useful backup because it is easier to amplify and sequence this subset of the marker. We therefore propose that ITS/ITS2 should be incorporated into the core barcode for seed plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama.

              The assembly of DNA barcode libraries is particularly relevant within species-rich natural communities for which accurate species identifications will enable detailed ecological forensic studies. In addition, well-resolved molecular phylogenies derived from these DNA barcode sequences have the potential to improve investigations of the mechanisms underlying community assembly and functional trait evolution. To date, no studies have effectively applied DNA barcodes sensu strictu in this manner. In this report, we demonstrate that a three-locus DNA barcode when applied to 296 species of woody trees, shrubs, and palms found within the 50-ha Forest Dynamics Plot on Barro Colorado Island (BCI), Panama, resulted in >98% correct identifications. These DNA barcode sequences are also used to reconstruct a robust community phylogeny employing a supermatrix method for 281 of the 296 plant species in the plot. The three-locus barcode data were sufficient to reliably reconstruct evolutionary relationships among the plant taxa in the plot that are congruent with the broadly accepted phylogeny of flowering plants (APG II). Earlier work on the phylogenetic structure of the BCI forest dynamics plot employing less resolved phylogenies reveals significant differences in evolutionary and ecological inferences compared with our data and suggests that unresolved community phylogenies may have increased type I and type II errors. These results illustrate how highly resolved phylogenies based on DNA barcode sequence data will enhance research focused on the interface between community ecology and evolution.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biodivers Data J
                Biodivers Data J
                1
                urn:lsid:arphahub.com:pub:F9B2E808-C883-5F47-B276-6D62129E4FF4
                urn:lsid:zoobank.org:pub:245B00E9-BFE5-4B4F-B76E-15C30BA74C02
                Biodiversity Data Journal
                Pensoft Publishers
                1314-2836
                1314-2828
                2021
                27 January 2021
                : 9
                Affiliations
                [1 ] Institute of Botany, Azerbaijan National Academy of Sciences, Baku, Azerbaijan Institute of Botany, Azerbaijan National Academy of Sciences Baku Azerbaijan
                [2 ] Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Napoli, Italy Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo Napoli Italy
                [3 ] CNR - Istituto di Scienze del Patrimonio Culturale, Sesto Fiorentino, Italy CNR - Istituto di Scienze del Patrimonio Culturale Sesto Fiorentino Italy
                Author notes
                Corresponding author: Dilzara Aghayeva ( a_dilzara@ 123456yahoo.com ).

                Academic editor: Anatoliy Khapugin

                Article
                61333 14698
                10.3897/BDJ.9.e61333
                7858560
                Parvin Aghayeva, Salvatore Cozzolino, Donata Cafasso, Valida Ali-zade, Silvia Fineschi, Dilzara Aghayeva

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Figures: 8, Tables: 6, References: 45
                Categories
                Research Article

                Comments

                Comment on this article