3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dependence of the efficiency of spin Hall torque on the transparency of Pt/ferromagnetic layer interfaces

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          Spin Hall Effect

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Current-induced spin orientation of electrons in semiconductors

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer.

              Methods to manipulate the magnetization of ferromagnets by means of local electric fields or current-induced spin transfer torque allow the design of integrated spintronic devices with reduced dimensions and energy consumption compared with conventional magnetic field actuation. An alternative way to induce a spin torque using an electric current has been proposed based on intrinsic spin-orbit magnetic fields and recently realized in a strained low-temperature ferromagnetic semiconductor. Here we demonstrate that strong magnetic fields can be induced in ferromagnetic metal films lacking structure inversion symmetry through the Rashba effect. Owing to the combination of spin-orbit and exchange interactions, we show that an electric current flowing in the plane of a Co layer with asymmetric Pt and AlO(x) interfaces produces an effective transverse magnetic field of 1 T per 10(8) A cm(-2). Besides its fundamental significance, the high efficiency of this process makes it a realistic candidate for room-temperature spintronic applications.
                Bookmark

                Author and article information

                Journal
                PRBMDO
                Physical Review B
                Phys. Rev. B
                American Physical Society (APS)
                1098-0121
                1550-235X
                August 2015
                August 31 2015
                : 92
                : 6
                Article
                10.1103/PhysRevB.92.064426
                e16c7801-79bc-4528-b8cb-f26a44c5e7db
                © 2015

                http://link.aps.org/licenses/aps-default-license

                http://link.aps.org/licenses/aps-default-accepted-manuscript-license

                History

                Comments

                Comment on this article