22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Multimodal, Multimedia Point-of-Care Deep Learning Framework for COVID-19 Diagnosis

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this article, we share our experiences in designing and developing a suite of deep neural network–(DNN) based COVID-19 case detection and recognition framework. Existing pathological tests such as RT-PCR-based pathogen RNA detection from nasal swabbing seem to display low detection rates during the early stages of virus contraction. Moreover, the reliance on a few overburdened laboratories based around an epicenter capable of supplying large numbers of RT-PCR tests makes this testing method non-scalable when the rate of infections is high. Similarly, finding an effective drug or vaccine with which to combat COVID-19 requires a long time and many clinical trials. The development of pathological COVID-19 tests is hindered by shortages in the supply chain of chemical reagents necessary for testing on a large scale. This diminishes the speed of diagnosis and the ability to filter out COVID-19 positive patients from uninfected patients on a national level. Existing research has shown that DNN has been successful in identifying COVID-19 from radiological media such as CT scans and X-ray images, audio media such as cough sounds, optical coherence tomography to identify conjunctivitis and pink eye symptoms on the ocular surface, body temperature measurement using smartphone fingerprint sensors or thermal cameras, the use of live facial detection to identify safe social distancing practices from camera images, and face mask detection from camera images. We also investigate the utility of federated learning in diagnosis cases where private data can be trained via edge learning. These point-of-care modalities can be integrated with DNN-based RT-PCR laboratory test results to assimilate multiple modalities of COVID-19 detection and thereby provide more dimensions of diagnosis. Finally, we will present our initial test results, which are encouraging.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding

            Summary Background In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. Methods We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. Findings The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. Interpretation 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. Funding National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak

              Coronavirus disease (COVID-19) is caused by SARS-COV2 and represents the causative agent of a potentially fatal disease that is of great global public health concern. Based on the large number of infected people that were exposed to the wet animal market in Wuhan City, China, it is suggested that this is likely the zoonotic origin of COVID-19. Person-to-person transmission of COVID-19 infection led to the isolation of patients that were subsequently administered a variety of treatments. Extensive measures to reduce person-to-person transmission of COVID-19 have been implemented to control the current outbreak. Special attention and efforts to protect or reduce transmission should be applied in susceptible populations including children, health care providers, and elderly people. In this review, we highlights the symptoms, epidemiology, transmission, pathogenesis, phylogenetic analysis and future directions to control the spread of this fatal disease.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                ACM Transactions on Multimedia Computing, Communications, and Applications
                ACM Trans. Multimedia Comput. Commun. Appl.
                Association for Computing Machinery (ACM)
                1551-6857
                1551-6865
                March 31 2021
                March 31 2021
                : 17
                : 1s
                : 1-24
                Affiliations
                [1 ]Department of Scientific Research and Postgraduate Studies, University of Prince Mugrin, Madinah, Saudi Arabia
                [2 ]Research Chair of Pervasive and Mobile Computing, and Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
                [3 ]Biomedical Technology Dept., College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
                [4 ]Department of Computer Engineering, National Institute of Technology Kurukshetra, Kurukshetra-136119, India, and Department of Computer Science and Information Engineering, Asia University, Taiwan
                Article
                10.1145/3421725
                e16cd72e-4a6e-4831-a55e-8f46d5c9a373
                © 2021
                History

                Comments

                Comment on this article