100
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pharmacology, Physiology, and Mechanisms of Action of Dipeptidyl Peptidase-4 Inhibitors

      review-article
      1 , 1 , *
      Endocrine Reviews
      Oxford University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dipeptidyl peptidase-4 (DPP4) is a widely expressed enzyme transducing actions through an anchored transmembrane molecule and a soluble circulating protein. Both membrane-associated and soluble DPP4 exert catalytic activity, cleaving proteins containing a position 2 alanine or proline. DPP4-mediated enzymatic cleavage alternatively inactivates peptides or generates new bioactive moieties that may exert competing or novel activities. The widespread use of selective DPP4 inhibitors for the treatment of type 2 diabetes has heightened interest in the molecular mechanisms through which DPP4 inhibitors exert their pleiotropic actions. Here we review the biology of DPP4 with a focus on: 1) identification of pharmacological vs physiological DPP4 substrates; and 2) elucidation of mechanisms of actions of DPP4 in studies employing genetic elimination or chemical reduction of DPP4 activity. We review data identifying the roles of key DPP4 substrates in transducing the glucoregulatory, anti-inflammatory, and cardiometabolic actions of DPP4 inhibitors in both preclinical and clinical studies. Finally, we highlight experimental pitfalls and technical challenges encountered in studies designed to understand the mechanisms of action and downstream targets activated by inhibition of DPP4.

          Related collections

          Most cited references211

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes.

          The ability of mammals to resist body fat accumulation is linked to their ability to expand the number and activity of "brown adipocytes" within white fat depots. Activation of β-adrenergic receptors (β-ARs) can induce a functional "brown-like" adipocyte phenotype. As cardiac natriuretic peptides (NPs) and β-AR agonists are similarly potent at stimulating lipolysis in human adipocytes, we investigated whether NPs could induce human and mouse adipocytes to acquire brown adipocyte features, including a capacity for thermogenic energy expenditure mediated by uncoupling protein 1 (UCP1). In human adipocytes, atrial NP (ANP) and ventricular NP (BNP) activated PPARγ coactivator-1α (PGC-1α) and UCP1 expression, induced mitochondriogenesis, and increased uncoupled and total respiration. At low concentrations, ANP and β-AR agonists additively enhanced expression of brown fat and mitochondrial markers in a p38 MAPK-dependent manner. Mice exposed to cold temperatures had increased levels of circulating NPs as well as higher expression of NP signaling receptor and lower expression of the NP clearance receptor (Nprc) in brown adipose tissue (BAT) and white adipose tissue (WAT). NPR-C(-/-) mice had markedly smaller WAT and BAT depots but higher expression of thermogenic genes such as Ucp1. Infusion of BNP into mice robustly increased Ucp1 and Pgc-1α expression in WAT and BAT, with corresponding elevation of respiration and energy expenditure. These results suggest that NPs promote "browning" of white adipocytes to increase energy expenditure, defining the heart as a central regulator of adipose tissue biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV.

            Dipeptidyl-peptidase IV/CD26 (DPP IV) is a cell-surface protease belonging to the prolyloligopeptidase family. It selectively removes the N-terminal dipeptide from peptides with proline or alanine in the second position. Apart from its catalytic activity, it interacts with several proteins, for instance, adenosine deaminase, the HIV gp120 protein, fibronectin, collagen, the chemokine receptor CXCR4, and the tyrosine phosphatase CD45. DPP IV is expressed on a specific set of T lymphocytes, where it is up-regulated after activation. It is also expressed in a variety of tissues, primarily on endothelial and epithelial cells. A soluble form is present in plasma and other body fluids. DPP IV has been proposed as a diagnostic or prognostic marker for various tumors, hematological malignancies, immunological, inflammatory, psychoneuroendocrine disorders, and viral infections. DPP IV truncates many bioactive peptides of medical importance. It plays a role in glucose homeostasis through proteolytic inactivation of the incretins. DPP IV inhibitors improve glucose tolerance and pancreatic islet cell function in animal models of type 2 diabetes and in diabetic patients. The role of DPP IV/ CD26 within the immune system is a combination of its exopeptidase activity and its interactions with different molecules. This enables DPP IV/CD26 to serve as a co-stimulatory molecule to influence T cell activity and to modulate chemotaxis. DPP IV is also implicated in HIV-1 entry, malignant transformation, and tumor invasion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dipeptidyl Peptidase 4 Is a Novel Adipokine Potentially Linking Obesity to the Metabolic Syndrome

              OBJECTIVE Comprehensive proteomic profiling of the human adipocyte secretome identified dipeptidyl peptidase 4 (DPP4) as a novel adipokine. This study assessed the functional implications of the adipokine DPP4 and its association to the metabolic syndrome. RESEARCH DESIGN AND METHODS Human adipocytes and skeletal and smooth muscle cells were used to monitor DPP4 release and assess the effects of soluble DPP4 on insulin signaling. In lean and obese subjects, depot-specific expression of DPP4 and its release from adipose tissue explants were determined and correlated to parameters of the metabolic syndrome. RESULTS Fully differentiated adipocytes exhibit a substantially higher release of DPP4 compared with preadipocytes or macrophages. Direct addition of DPP4 to fat and skeletal and smooth muscle cells impairs insulin signaling. A fivefold higher level of DPP4 protein expression was seen in visceral compared with subcutaneous fat of obese patients, with no regional difference in lean subjects. DPP4 serum concentrations significantly correlated with adipocyte size. By using adipose tissue explants from lean and obese subjects, we observed a twofold increase in DPP4 release that strongly correlated with adipocyte volume and parameters of the metabolic syndrome and was decreased to the lean level after weight reduction. DPP4 released from adipose tissue correlated positively with an increasing risk score for the metabolic syndrome. CONCLUSIONS DPP4 is a novel adipokine that may impair insulin sensitivity in an autocrine and paracrine fashion. Furthermore, DPP4 release strongly correlates with adipocyte size, potentially representing an important source of DPP4 in obesity. Therefore, we suggest that DPP4 may be involved in linking adipose tissue and the metabolic syndrome.
                Bookmark

                Author and article information

                Journal
                Endocr Rev
                Endocr. Rev
                edrv
                Endocrine Reviews
                Oxford University Press
                0163-769X
                1945-7189
                01 December 2014
                12 September 2014
                : 35
                : 6
                : 992-1019
                Affiliations
                [1 ]Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
                Author notes
                [* ]Address all correspondence and requests for reprints to: Daniel J. Drucker, Department of Medicine, Lunenfeld-Tanenbaum Research Institute, 600 University Avenue, TCP5–1004, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada.
                Article
                10.1210/er.2014-1035
                7108477
                25216328
                e1722c6b-a734-43d2-be51-ec606418964c
                Copyright © 2014 by the Endocrine Society

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 04 May 2014
                : 05 September 2014
                Categories
                Reviews

                Comments

                Comment on this article