12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide analysis of three histone marks and gene expression in Paulownia fortunei with phytoplasma infection

      research-article
      1 , 2 , 1 , 2 , , 1 , 2
      BMC Genomics
      BioMed Central
      PaWB, Epigenetics, Histone modifications, ChIP-Seq

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Paulownia withes’-broom (PaWB) disease caused by phytoplasma is a serious infectious disease for Paulownia. However, the underlying molecular pathogenesis is not fully understood. Recent studies have demonstrated that histone modifications could play a role in plant defense responses to pathogens. But there is still no available genome-wide histone modification data in non-model ligneous species infected with phytoplasma.

          Results

          Here, we provided the first genome-wide profiles of three histone marks (H3K4me3, H3K36me3 and H3K9ac) in Paulownia fortunei under phytoplasma stress by using chromatin immunoprecipitation sequencing (ChIP-Seq). We found that H3K4me3, H3K36me3 and H3K9ac were mainly enriched in the genic regions in P. fortunei with (PFI) and without (PF) phytoplasma infection. ChIP-Seq analysis revealed 1738, 986, and 2577 genes were differentially modified by H3K4me3, H3K36me3 and H3K9ac marks in PFI under phytoplasma infection, respectively. The functional analysis of these genes suggested that most of them were mainly involved in metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, plant-pathogen interaction and plant hormone signal transduction. In addition, the combinational analysis of ChIP-Seq and RNA-Seq showed that differential histone methylation and acetylation only affected a small subset of phytoplasma-responsive genes.

          Conclusions

          Taken together, this is the first report of integrated analysis of histone modifications and gene expression involved in Paulownia-phytoplasma interaction. Our results will provide the valuable resources for the mechanism studies of gene regulation in non-model plants upon pathogens attack.

          Electronic supplementary material

          The online version of this article (10.1186/s12864-019-5609-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Chromatin modifications and their function.

          The surface of nucleosomes is studded with a multiplicity of modifications. At least eight different classes have been characterized to date and many different sites have been identified for each class. Operationally, modifications function either by disrupting chromatin contacts or by affecting the recruitment of nonhistone proteins to chromatin. Their presence on histones can dictate the higher-order chromatin structure in which DNA is packaged and can orchestrate the ordered recruitment of enzyme complexes to manipulate DNA. In this way, histone modifications have the potential to influence many fundamental biological processes, some of which may be epigenetically inherited.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens.

            Plant WRKY transcription factors are key regulatory components of plant responses to microbial infection. In addition to regulating the expression of defense-related genes, WRKY transcription factors have also been shown to regulate cross-talk between jasmonate- and salicylate-regulated disease response pathways. The two pathways mediate resistance against different types of microbial pathogens, and there are numerous reports of antagonistic interactions between them. Here we show that mutations of the Arabidopsis WRKY33 gene encoding a WRKY transcription factor cause enhanced susceptibility to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola concomitant with reduced expression of the jasmonate-regulated plant defensin PDF1.2 gene. Ectopic over-expression of WRKY33, on the other hand, increases resistance to the two necrotrophic fungal pathogens. The wrky33 mutants do not show altered responses to a virulent strain of the bacterial pathogen Pseudomonas syringae, although the ectopic expression of WRKY33 results in enhanced susceptibility to this pathogen. The susceptibility of WRKY33-over-expressing plants to P. syringae is associated with reduced expression of the salicylate-regulated PR-1 gene. The WRKY33 transcript is induced in response to pathogen infection, or treatment with salicylate or the paraquat herbicide that generates activated oxygen species in exposed cells. WRKY33 is localized to the nucleus of plant cells and recognizes DNA molecules containing the TTGACC W-box sequence. Together, these results indicate that pathogen-induced WRKY33 is an important transcription factor that regulates the antagonistic relationship between defense pathways mediating responses to P. syringae and necrotrophic pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis.

              Plant sensing of invading pathogens triggers massive metabolic reprogramming, including the induction of secondary antimicrobial compounds known as phytoalexins. We recently reported that MPK3 and MPK6, two pathogen-responsive mitogen-activated protein kinases, play essential roles in the induction of camalexin, the major phytoalexin in Arabidopsis thaliana. In search of the transcription factors downstream of MPK3/MPK6, we found that WRKY33 is required for MPK3/MPK6-induced camalexin biosynthesis. In wrky33 mutants, both gain-of-function MPK3/MPK6- and pathogen-induced camalexin production are compromised, which is associated with the loss of camalexin biosynthetic gene activation. WRKY33 is a pathogen-inducible transcription factor, whose expression is regulated by the MPK3/MPK6 cascade. Chromatin immunoprecipitation assays reveal that WRKY33 binds to its own promoter in vivo, suggesting a potential positive feedback regulatory loop. Furthermore, WRKY33 is a substrate of MPK3/MPK6. Mutation of MPK3/MPK6 phosphorylation sites in WRKY33 compromises its ability to complement the camalexin induction in the wrky33 mutant. Using a phospho-protein mobility shift assay, we demonstrate that WRKY33 is phosphorylated by MPK3/MPK6 in vivo in response to Botrytis cinerea infection. Based on these data, we conclude that WRKY33 functions downstream of MPK3/MPK6 in reprogramming the expression of camalexin biosynthetic genes, which drives the metabolic flow to camalexin production in Arabidopsis challenged by pathogens.
                Bookmark

                Author and article information

                Contributors
                yanlijun0127@163.com
                86-371-63558605 , zlxx64@126.com
                1146943999@qq.com
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                21 March 2019
                21 March 2019
                2019
                : 20
                : 234
                Affiliations
                [1 ]GRID grid.108266.b, Institute of Paulownia, Henan Agricultural University, ; Zhengzhou, Henan 450002 People’s Republic of China
                [2 ]GRID grid.108266.b, College of Forestry, Henan Agricultural University, ; Zhengzhou, Henan 450002 People’s Republic of China
                Article
                5609
                10.1186/s12864-019-5609-1
                6429711
                30898112
                e1840b2d-0df4-4520-a80c-93ca83279e08
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 September 2018
                : 14 March 2019
                Funding
                Funded by: the National Key Research and Development Program
                Award ID: 2016YFD0600106
                Award ID: 2017YFD060050604
                Award Recipient :
                Funded by: the Forestry Science and Technology Demonstration Project of Central Finance
                Award ID: GTH[2017]15
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2019

                Genetics
                pawb,epigenetics,histone modifications,chip-seq
                Genetics
                pawb, epigenetics, histone modifications, chip-seq

                Comments

                Comment on this article