10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of a novel quiescence responsive element downregulated by v-Src in the promoter of the neuroretina specific QR1 gene.

      Oncogene
      Animals, Avian Sarcoma Viruses, genetics, Base Sequence, Binding Sites, Cell Division, Coturnix, Culture Media, Serum-Free, pharmacology, DNA, metabolism, Eye Proteins, Gene Expression Regulation, Macromolecular Substances, Oncogene Protein pp60(v-src), physiology, Promoter Regions, Genetic, Recombinant Fusion Proteins, biosynthesis, Regulatory Sequences, Nucleic Acid, Retina, Temperature, Transcription, Genetic, Transfection

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The neuroretina is a functional unit of the central nervous system which arises through successive steps of division, growth arrest and differentiation of neuroectodermal precursors. Postmitotic quail neuroretina (QNR) cells are conditionally induced to divide upon infection with temperature sensitive mutants of Rous sarcoma virus (RSV), since QNR cell division can be arrested by either inactivating p60v-Src at the nonpermissive temperature (41 degrees C) or by serum deprivation at 37 degrees C. We are studying the transcriptional control of QR1, a neuroretina specific gene, whose expression is down-regulated in proliferating cells at 37 degrees C and is fully restored when these cells are made quiescent. We previously showed that this quiescence specific upregulation implicates a promoter region named A box, which binds Maf transcription factors. We report the identification of the C box, a second promoter sequence that activates QR1 transcription in non dividing cells. This sequence is able to form two DNA-protein complexes, one of which (C4) is predominantly detected in growth arrested NR cells. We identified the DNA binding site for C4 and described mutations that abolish both C4 binding and promoter activity in quiescent cells. Moreover, we show that a multimerized C box is able to stimulate a heterologous promoter in non dividing cells and constitutes, therefore, a novel quiescence responsive enhancer. Finally, we report that QR1 transcriptional response to cell quiescence requires cooperation between the C box and A box.

          Related collections

          Author and article information

          Comments

          Comment on this article