22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atherosclerosis is an inflammatory process that involves activation of matrix metalloproteinases (MMPs); MMPs degrade collagen and allow for smooth-muscle cell migration within a vessel. Moreover, this begets an accumulation of other cellular material, resulting in occlusion of the vessel and ischemic events to tissues in need of nutrients. Homocysteine has been shown to activate MMPs via an increase in oxidative stress and acting as a signaling molecule on receptors like the peroxisome proliferator activated receptor-γ and N-methyl-D-aspartate receptor. Nitric oxide has been shown to be beneficial in some cases of deactivating MMPs. However, in other cases, it has been shown to be harmful. Further studies are warranted on the scenarios that are beneficial versus destructive. Hydrogen sulfide (H 2S) has been shown to decrease MMP activities in all cases in the literature by acting as an antioxidant and vasodilator. Various MMP-knockout and gene-silencing models have been used to determine the function of the many different MMPs. This has allowed us to discern the role that each MMP has in promoting or alleviating pathological conditions. Furthermore, there has been some study into the MMP polymorphisms that exist in the population. The purpose of this review is to examine the role of MMPs and their polymorphisms on the development of atherosclerosis, with emphasis placed on pathways that involve nitric oxide, hydrogen sulfide, and homocysteine.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.

          This report is the continuation of two earlier reports that defined human arterial intima and precursors of advanced atherosclerotic lesions in humans. This report describes the characteristic components and pathogenic mechanisms of the various advanced atherosclerotic lesions. These, with the earlier definitions of precursor lesions, led to the histological classification of human atherosclerotic lesions found in the second part of this report. The Committee on Vascular Lesions also attempted to correlate the appearance of lesions noted in clinical imaging studies with histological lesion types and corresponding clinical syndromes. In the histological classification, lesions are designated by Roman numerals, which indicate the usual sequence of lesion progression. The initial (type 1) lesion contains enough atherogenic lipoprotein to elicit an increase in macrophages and formation of scattered macrophage foam cells. As in subsequent lesion types, the changes are more marked in locations of arteries with adaptive intimal thickening. (Adaptive thickenings, which are present at constant locations in everyone from birth, do not obstruct the lumen and represent adaptations to local mechanical forces). Type II lesions consist primarily of layers of macrophage foam cells and lipid-laden smooth muscle cells and include lesions grossly designated as fatty streaks. Type III is the intermediate stage between type II and type IV (atheroma, a lesion that is potentially symptom-producing). In addition to the lipid-laden cells of type II, type III lesions contain scattered collections of extracellular lipid droplets and particles that disrupt the coherence of some intimal smooth muscle cells. This extracellular lipid is the immediate precursor of the larger, confluent, and more disruptive core of extracellular lipid that characterizes type IV lesions. Beginning around the fourth decade of life, lesions that usually have a lipid core may also contain thick layers of fibrous connective tissue (type V lesion) and/or fissure, hematoma, and thrombus (type VI lesion). Some type V lesions are largely calcified (type Vb), and some consist mainly of fibrous connective tissue and little or no accumulated lipid or calcium (type Vc).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cyclic GMP phosphodiesterases and regulation of smooth muscle function.

            Cyclic GMP (cGMP) made in response to atrial natriuretic peptide (ANP) or nitric oxide (NO) is an important regulator of short-term changes in smooth muscle tone and longer-term responses to chronic drug treatment or proliferative signals. The ability of smooth muscle cells (SMCs) to utilize different combinations of phosphodiesterase (PDE) isozymes allows cGMP to mediate these multiple processes. For example, PDE5 as a major cGMP-hydrolyzing PDE effectively controls the development of smooth muscle relaxation. In order for contraction to occur, PDE5 is activated and cGMP falls. Conversely, blockade of PDE5 activity allows the relaxation cycle to be prolonged and enhanced. A recently shown direct activation of PDE5 by cGMP binding to the GAF A domain suggests that this regulatory site might be a target for new drug development. The calcium surge associated with vasoconstrictor initiated contraction also activates a calcium/calmodulin-dependent PDE (PDE1A). Together, PDE5 and PDE1A lower cGMP sufficiently to allow contraction. Longer term, both PDE5 and PDE1A mRNA are induced by chronic stimulation of guanylyl cyclase. This induction is a major cause of the tolerance that develops to NO-releasing drugs. Finally, high levels of cGMP or cAMP also act as a brake to attenuate the proliferative response of SMCs to many mitogens. After vessel damage, in order for SMC proliferation to occur, the levels of cGMP and cAMP must be decreased. In humans, this decrease is caused in large part by induction of another Ca2+/calmodulin-dependent PDE (PDE1C) that allows the brake to be released and proliferation to start.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries.

              Matrix metalloproteinases (MMPs) are thought to be involved in the growth, destabilization, and eventual rupture of atherosclerotic lesions. Using the mouse brachiocephalic artery model of plaque instability, we compared apolipoprotein E (apoE)/MMP-3, apoE/MMP-7, apoE/MMP-9, and apoE/MMP-12 double knockouts with their age-, strain-, and sex-matched apoE single knockout controls. Brachiocephalic artery plaques were significantly larger in apoE/MMP-3 and apoE/MMP-9 double knockouts than in controls. The number of buried fibrous layers was also significantly higher in the double knockouts, and both knockouts exhibited cellular compositional changes indicative of an unstable plaque phenotype. Conversely, lesion size and buried fibrous layers were reduced in apoE/MMP-12 double knockouts compared with controls, and double knockouts had increased smooth muscle cell and reduced macrophage content in the plaque, indicative of a stable plaque phenotype. ApoE/MMP-7 double knockout plaques contained significantly more smooth muscle cells than controls, but neither lesion size nor features of stability were altered in these animals. Hence, MMP-3 and MMP-9 appear normally to play protective roles, limiting plaque growth and promoting a stable plaque phenotype. MMP-12 supports lesion expansion and destabilization. MMP-7 has no effect on plaque growth or stability, although it is associated with reduced smooth muscle cell content in plaques. These data demonstrate that MMPs are directly involved in atherosclerotic plaque destabilization and clearly show that members of the MMP family have widely differing effects on atherogenesis.
                Bookmark

                Author and article information

                Journal
                Vasc Health Risk Manag
                Vasc Health Risk Manag
                Vascular Health and Risk Management
                Vascular Health and Risk Management
                Dove Medical Press
                1176-6344
                1178-2048
                2015
                27 February 2015
                : 11
                : 173-183
                Affiliations
                Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA
                Author notes
                Correspondence: Thomas P Vacek, Department of Physiology and Biophysics, School of Medicine, University of Louisville, Abell Administration Building, 323 East Chestnut Street, Louisville, KY 40202, USA, Tel +1 502 852 3627, Email tpvace01@ 123456louisville.edu
                Article
                vhrm-11-173
                10.2147/VHRM.S68415
                4354431
                25767394
                e1886e83-21d6-493b-bf14-5f8b1e2f3aab
                © 2015 Vacek et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Cardiovascular Medicine
                homocysteine,matrix metalloproteinases,oxidative stress,bone remodeling,collagen cross-linking,hydrogen sulfide,nitric oxide

                Comments

                Comment on this article