25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How does hormesis impact biology, toxicology, and medicine?

      review-article
      1 , , 2 , 3
      NPJ Aging and Mechanisms of Disease
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hormesis refers to adaptive responses of biological systems to moderate environmental or self-imposed challenges through which the system improves its functionality and/or tolerance to more severe challenges. The past two decades have witnessed an expanding recognition of the concept of hormesis, elucidation of its evolutionary foundations, and underlying cellular and molecular mechanisms, and practical applications to improve quality of life. To better inform future basic and applied research, we organized and re-evaluated recent hormesis-related findings with the intent of incorporating new knowledge of biological mechanisms, and providing fundamental insights into the biological, biomedical and risk assessment implications of hormesis. As the literature on hormesis is expanding rapidly into new areas of basic and applied research, it is important to provide refined conceptualization of hormesis to aid in designing and interpreting future studies. Here, we establish a working compartmentalization of hormesis into ten categories that provide an integrated understanding of the biological meaning and applications of hormesis.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial iron homeostasis.

          Iron is essential to virtually all organisms, but poses problems of toxicity and poor solubility. Bacteria have evolved various mechanisms to counter the problems imposed by their iron dependence, allowing them to achieve effective iron homeostasis under a range of iron regimes. Highly efficient iron acquisition systems are used to scavenge iron from the environment under iron-restricted conditions. In many cases, this involves the secretion and internalisation of extracellular ferric chelators called siderophores. Ferrous iron can also be directly imported by the G protein-like transporter, FeoB. For pathogens, host-iron complexes (transferrin, lactoferrin, haem, haemoglobin) are directly used as iron sources. Bacterial iron storage proteins (ferritin, bacterioferritin) provide intracellular iron reserves for use when external supplies are restricted, and iron detoxification proteins (Dps) are employed to protect the chromosome from iron-induced free radical damage. There is evidence that bacteria control their iron requirements in response to iron availability by down-regulating the expression of iron proteins during iron-restricted growth. And finally, the expression of the iron homeostatic machinery is subject to iron-dependent global control ensuring that iron acquisition, storage and consumption are geared to iron availability and that intracellular levels of free iron do not reach toxic levels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hormesis defined.

            Hormesis is a term used by toxicologists to refer to a biphasic dose-response to an environmental agent characterized by a low dose stimulation or beneficial effect and a high dose inhibitory or toxic effect. In the fields of biology and medicine hormesis is defined as an adaptive response of cells and organisms to a moderate (usually intermittent) stress. Examples include ischemic preconditioning, exercise, dietary energy restriction and exposures to low doses of certain phytochemicals. Recent findings have elucidated the cellular signaling pathways and molecular mechanisms that mediate hormetic responses which typically involve enzymes such as kinases and deacetylases, and transcription factors such as Nrf-2 and NF-kappaB. As a result, cells increase their production of cytoprotective and restorative proteins including growth factors, phase 2 and antioxidant enzymes, and protein chaperones. A better understanding of hormesis mechanisms at the cellular and molecular levels is leading to and to novel approaches for the prevention and treatment of many different diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders.

              Despite the capacity of chaperones and other homeostatic components to restore folding equilibrium, cells appear poorly adapted for chronic oxidative stress that increases in cancer and in metabolic and neurodegenerative diseases. Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This article introduces the concept of hormesis and its applications to the field of neuroprotection. It is argued that the hormetic dose response provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose-response relationships, their mechanistic foundations, and their relationship to the concept of biological plasticity, as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This article describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including sirtuin and Nrf2 and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. Particular attention is given to the emerging role of nitric oxide, carbon monoxide, and hydrogen sulfide gases in hormetic-based neuroprotection and their relationship to membrane radical dynamics and mitochondrial redox signaling.
                Bookmark

                Author and article information

                Contributors
                413-545-3164 , edwardc@schoolph.umass.edu
                Journal
                NPJ Aging Mech Dis
                NPJ Aging Mech Dis
                NPJ Aging and Mechanisms of Disease
                Nature Publishing Group UK (London )
                2056-3973
                15 September 2017
                15 September 2017
                2017
                : 3
                Affiliations
                [1 ]ISNI 0000 0001 2184 9220, GRID grid.266683.f, Department of Environmental Health Sciences, , Morrill I, N344, University of Massachusetts, ; Amherst, MA 01003 USA
                [2 ]ISNI 0000 0000 9372 4913, GRID grid.419475.a, Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, ; Baltimore, MD 21224 USA
                [3 ]ISNI 0000 0001 2171 9311, GRID grid.21107.35, Department of Neuroscience, , Johns Hopkins University School of Medicine, ; Baltimore, MD 21205 USA
                Article
                13
                10.1038/s41514-017-0013-z
                5601424
                e19bdcee-4931-4d12-b291-ff9b1db31fe9
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Review Article
                Custom metadata
                © The Author(s) 2017

                Comments

                Comment on this article