64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Misregulation of AUXIN RESPONSE FACTOR 8 Underlies the Developmental Abnormalities Caused by Three Distinct Viral Silencing Suppressors in Arabidopsis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In Arabidopsis, micro (mi)RNAs and trans-acting (ta-si)RNAs synthesized directly or indirectly through the DICER-LIKE-1 (DCL1) ribonuclease have roles in patterning and hormonal responses, while DCL2,3,4-dependent small-interfering (si)RNAs are mainly involved in silencing of transposable elements and antiviral defense. Viral suppressors of RNA silencing (VSRs) produced by phytoviruses to counter plant defense may perturb plant developmental programs because of the collision of their inhibitory effects with the regulatory action of endogenous miRNAs and ta-siRNAs. This could explain the similar developmental aberrations displayed by Arabidopsis miRNA/ta-siRNA pathway mutants, including dcl1, and by some VSR-expressing plants. Nonetheless, the molecular bases for these morphological aberrations have remained mysterious, and their contribution to viral disease symptoms/virulence unexplored. The extent of VSR inhibitory actions to other types of endogenous small RNAs remains also unclear. Here, we present an in-depth analysis of transgenic Arabidopsis expressing constitutively HcPro, P19 and P15, three unrelated VSRs. We show that VSR expression has comparable, yet modest effects on known miRNA and ta-siRNA target RNA levels, similar to those observed using an hypomorphic dcl1 mutation. However, by combining results of transcriptome studies with deep-sequencing data from immuno-precipitated small RNAs, additional, novel endogenous targets of miRNA and ta-siRNA were identified, unraveling an unsuspected complexity in the origin and scope-of-action of these molecules. Other stringent analyses pinpointed misregulation of the miR167 target AUXIN RESPONSE FACTOR 8 (ARF8) as a major cause for the developmental aberrations exhibited by VSR transgenic plants, but also for the phenotypes induced during normal viral infection caused by the HcPro-encoding Turnip mosaic virus (TuMV). Neither RNA silencing, its suppression by VSRs, nor the virulence/accumulation of TuMV was altered by mutations in ARF8. These findings have important implications for our understanding of viral disease symptoms and small RNA-directed regulation of plant growth/development.

          Author Summary

          In the plant and animal RNA silencing pathways, small RNA molecules known as micro (mi)RNA and short-interfering (si)RNAs have key roles in development and antiviral defense, respectively. In turn, viruses counteract this defense by deploying specific virulence factors, referred to as Viral Suppressors of RNA silencing (VSRs), which target distinct steps of the host silencing machinery. In the model plant species Arabidopsis thaliana, transgenic expression of distinct VSRs often incurs a set of strikingly recurrent developmental anomalies that resemble those triggered by viral infections. While these defects have been assumed to result from a general interference of VSRs with silencing-based mechanisms controlling cellular growth, their exact molecular basis has remained largely elusive. Here, we address this issue by demonstrating that misregulation of a single transcript encoding the AUXIN RESPONSE FACTOR 8, a target of miR167, underlies most, if not all, of the defects caused by VSR expression, both in transgenic and in an authentic infection context. Our study also highlights the value of VSRs as generic tools for the discovery or validation of endogenous RNA silencing targets. These results also have implications for our understanding of small RNA-based regulations in plants, and shed light on the possible origin of some of the symptoms elicited by viral diseases.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Origin, biogenesis, and activity of plant microRNAs.

          MicroRNAs (miRNAs) are key posttranscriptional regulators of eukaryotic gene expression. Plants use highly conserved as well as more recently evolved, species-specific miRNAs to control a vast array of biological processes. This Review discusses current advances in our understanding of the origin, biogenesis, and mode of action of plant miRNAs and draws comparisons with their metazoan counterparts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Widespread translational inhibition by plant miRNAs and siRNAs.

            High complementarity between plant microRNAs (miRNAs) and their messenger RNA targets is thought to cause silencing, prevalently by endonucleolytic cleavage. We have isolated Arabidopsis mutants defective in miRNA action. Their analysis provides evidence that plant miRNA-guided silencing has a widespread translational inhibitory component that is genetically separable from endonucleolytic cleavage. We further show that the same is true of silencing mediated by small interfering RNA (siRNA) populations. Translational repression is effected in part by the ARGONAUTE proteins AGO1 and AGO10. It also requires the activity of the microtubule-severing enzyme katanin, implicating cytoskeleton dynamics in miRNA action, as recently suggested from animal studies. Also as in animals, the decapping component VARICOSE (VCS)/Ge-1 is required for translational repression by miRNAs, which suggests that the underlying mechanisms in the two kingdoms are related.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Auxin biosynthesis and its role in plant development.

              Yunde Zhao (2010)
              Indole-3-acetic acid (IAA), the main auxin in higher plants, has profound effects on plant growth and development. Both plants and some plant pathogens can produce IAA to modulate plant growth. Although the genes and biochemical reactions for auxin biosynthesis in some plant pathogens are well understood, elucidation of the mechanisms by which plants produce auxin has proven to be difficult. So far, no single complete pathway of de novo auxin biosynthesis in plants has been firmly established. However, recent studies have led to the discoveries of several genes in tryptophan-dependent auxin biosynthesis pathways. Recent findings have also determined that local auxin biosynthesis plays essential roles in many developmental processes including gametogenesis, embryogenesis, seedling growth, vascular patterning, and flower development. In this review, I summarize the recent advances in dissecting auxin biosynthetic pathways and how the understanding of auxin biosynthesis provides a crucial angle for analyzing the mechanisms of plant development.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2011
                May 2011
                12 May 2011
                : 7
                : 5
                : e1002035
                Affiliations
                [1 ]Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg Cedex, France
                [2 ]Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
                [3 ]Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
                [4 ]Unité de Recherche en Génomique Végétale, Evry Cedex, France
                University of Sydney, Australia
                Author notes

                ¤a: Current address: Ecole Normale Supérieure, Département de Biologie, UMR 8186, Paris Cedex, France.

                ¤b: Current address: INRA Centre d'Angers, Beaucouzé Cedex, France.

                Conceived and designed the experiments: FJ JPR VC YW OV. Performed the experiments: FJ AY LT SP. Analyzed the data: YW FJ OV VC JPR AY. Contributed reagents/materials/analysis tools: FJ AY LT. Wrote the paper: FJ OV.

                Article
                PPATHOGENS-D-10-00140
                10.1371/journal.ppat.1002035
                3093370
                21589905
                e1a1c11b-4dab-4c79-a347-0960170e53ac
                Jay, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 October 2010
                : 1 March 2011
                Page count
                Pages: 16
                Categories
                Research Article
                Biology
                Molecular Cell Biology
                Plant Science

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article