3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using Sensitivity Analysis to Develop a Validated Computational Model of Post-operative Calvarial Growth in Sagittal Craniosynostosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Craniosynostosis is the premature fusion of one or more sutures across the calvaria, resulting in morphological and health complications that require invasive corrective surgery. Finite element (FE) method is a powerful tool that can aid with preoperative planning and post-operative predictions of craniosynostosis outcomes. However, input factors can influence the prediction of skull growth and the pressure on the growing brain using this approach. Therefore, the aim of this study was to carry out a series of sensitivity studies to understand the effect of various input parameters on predicting the skull morphology of a sagittal synostosis patient post-operatively. Preoperative CT images of a 4-month old patient were used to develop a 3D model of the skull, in which calvarial bones, sutures, cerebrospinal fluid (CSF), and brain were segmented. Calvarial reconstructive surgery was virtually modeled and two intracranial content scenarios labeled “CSF present” and “CSF absent,” were then developed. FE method was used to predict the calvarial morphology up to 76 months of age with intracranial volume-bone contact parameters being established across the models. Sensitivity tests with regards to the choice of material properties, methods of simulating bone formation and the rate of bone formation across the sutures were undertaken. Results were compared to the in vivo data from the same patient. Sensitivity tests to the choice of various material properties highlighted that the defined elastic modulus for the craniotomies appears to have the greatest influence on the predicted overall skull morphology. The bone formation modeling approach across the sutures/craniotomies had a considerable impact on the level of contact pressure across the brain with minimum impact on the overall predicated morphology of the skull. Including the effect of CSF (based on the approach adopted here) displayed only a slight reduction in brain pressure outcomes. The sensitivity tests performed in this study set the foundation for future comparative studies using FE method to compare outcomes of different reconstruction techniques for the management of craniosynostosis.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Cranial sutures as intramembranous bone growth sites.

          Intramembranous bone growth is achieved through bone formation within a periosteum or by bone formation at sutures. Sutures are formed during embryonic development at the sites of approximation of the membranous bones of the craniofacial skeleton. They serve as the major sites of bone expansion during postnatal craniofacial growth. For sutures to function as intramembranous bone growth sites, they need to remain in an unossified state, yet allow new bone to be formed at the edges of the overlapping bone fronts. This process relies on the production of sufficient new bone cells to be recruited into the bone fronts, while ensuring that the cells within the suture remain undifferentiated. Unlike endochondral growth plates, which expand through chondrocyte hypertrophy, sutures do not have intrinsic growth potential. Rather, they produce new bone at the sutural edges of the bone fronts in response to external stimuli, such as signals arising from the expanding neurocranium. This process allows growth of the cranial vault to be coordinated with growth of the neurocranium. Too little or delayed bone growth will result in wide-open fontanels and suture agenesis, whereas too much or accelerated bone growth will result in osseous obliteration of the sutures or craniosynostosis. Craniosynostosis in humans, suture fusion in animals, and induced suture obliteration in vitro has been associated with mutations or alterations in expression of several transcription factors, growth factors, and their receptors. Much of the data concerning signaling within sutures has been garnered from research on cranial sutures; hence, only the cranial sutures will be discussed in detail in this review. This review synthesizes classic descriptions of suture growth and pathology with modern molecular analysis of genetics and cell function in normal and abnormal suture morphogenesis and growth in a unifying hypothesis. At the same time, the reader is reminded of the importance of the suture as an intramembranous bone growth site. Copyright 2000 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Age-dependent changes in material properties of the brain and braincase of the rat.

            Clinical and biomechanical evidence indicates that mechanisms and pathology of head injury in infants and young children may be different from those in adults. Biomechanical computer-based modeling, which can be used to provide insight into the thresholds for traumatic tissue injury, requires data on material properties of the brain, skull, and sutures that are specific for the pediatric population. In this study, brain material properties were determined for rats at postnatal days (PND) 13, 17, 43, and 90, and skull/suture composite (braincase) properties were determined at PND 13, 17, and 43. Controlled 1 mm indentation of a force probe into the brain was used to measure naive, non-preconditioned (NPC) and preconditioned (PC) instantaneous (G(i)) and long-term (G( infinity )) shear moduli of brain tissue both in situ and in vitro. Brains at 13 and 17 PND exhibited statistically indistinguishable shear moduli, as did brains at 43 and 90 PND. However, the immature (average of 13 and 17 PND) rat brain (G(i) = 3336 Pa NPC, 1754 Pa PC; G( infinity )= 786 Pa NPC, 626 Pa PC) was significantly stiffer (p < 0.05) than the mature (average of 43 and 90 PND) brains (G(i) = 1721 Pa NPC, 1232 Pa PC; G( infinity ) = 508 Pa NPC, 398 Pa PC). A "reverse engineering" finite element model approach, which simulated the indentation of the force probe into the intact braincase, was used to estimate the effective elastic moduli of the braincase. Although the skull of older rats was significantly thicker than that of the younger rats, there was no significant age-dependent change in the effective elastic modulus of the braincase (average value = 6.3 MPa). Thus, the increase in structural rigidity of the braincase with age (up to 43 PND) was due to an increase in skull thickness rather than stiffening of the tissue. These observations of a stiffer brain and more compliant braincase in the immature rat compared with the adult rat will aid in the development of age-specific experimental models and in computational head injury simulations. Specifically, these results will assist in the selection of forces to induce comparable mechanical stresses, strains and consequent injury profiles in brain tissues of immature and adult animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Craniosynostosis.

              Craniosynostosis, defined as the premature fusion of the cranial sutures, presents many challenges in classification and treatment. At least 20% of cases are caused by specific single gene mutations or chromosome abnormalities. This article maps out approaches to clinical assessment of a child presenting with an unusual head shape, and illustrates how genetic analysis can contribute to diagnosis and management.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                26 May 2021
                2021
                : 9
                : 621249
                Affiliations
                [1] 1Department of Mechanical Engineering, University College London , London, United Kingdom
                [2] 2Service de Chirurgie Maxillo-Faciale et Plastique, Assistance Publique des Hôpitaux de Paris , Paris, France
                [3] 3Department of Neurosurgery, Craniofacial 16 Surgery Unit, Necker–Enfants Malades University Hospital, Assistance Publique–Hôpitaux de 17 Paris, Université de Paris , Paris, France
                [4] 4Oxford Craniofacial Unit, Oxford University Hospital, NHS Foundation Trust , Oxford, United Kingdom
                Author notes

                Edited by: Karen Liu, King’s College London, United Kingdom

                Reviewed by: Jordi Marcé-Nogué, University of Rovira i Virgili, Spain; Junning Chen, University of Exeter, United Kingdom

                *Correspondence: Mehran Moazen, m.moazen@ 123456ucl.ac.uk

                This article was submitted to Molecular Medicine, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2021.621249
                8187911
                34124030
                e1a2460a-1f13-40c3-96d9-283f1540316e
                Copyright © 2021 Cross, Khonsari, Galiay, Patermoster, Johnson, Ventikos and Moazen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 October 2020
                : 21 April 2021
                Page count
                Figures: 6, Tables: 4, Equations: 0, References: 55, Pages: 11, Words: 0
                Funding
                Funded by: Rosetrees Trust 10.13039/501100000833
                Award ID: A1899
                Categories
                Cell and Developmental Biology
                Original Research

                craniosynostosis,cerebrospinal fluid,finite element,calvarial growth,sagittal synostosis,biomechanics

                Comments

                Comment on this article