3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recombinant viruses with other anti-cancer therapeutics: a step towards advancement of oncolytic virotherapy

      ,
      Cancer Gene Therapy
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          ONCOLYTIC VIROTHERAPY

          Oncolytic virotherapy is an emerging treatment modality which uses replication competent viruses to destroy cancers. Advances in the past two years include preclinical proof of feasibility for a single-shot virotherapy cure, identification of drugs that accelerate intratumoral virus propagation, new strategies to maximize the immunotherapeutic potential of oncolytic virotherapy, and clinical confirmation of a critical viremic thereshold for vascular delivery and intratumoral virus replication. The primary clinical milestone was completion of accrual in a phase III trial of intratumoral herpes simplex virus therapy using talimogene laherparepvec for metastatic melanoma. Challenges for the field are to select ‘winners’ from a burgeoning number of oncolytic platforms and engineered derivatives, to transiently suppress but then unleash the power of the immune system to maximize both virus spread and anticancer immunity, to develop more meaningful preclinical virotherapy models and to manufacture viruses with orders of magnitude higher yields compared to established vaccine manufacturing processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression.

            Transforming growth factor beta (TGF-beta) plays an important role in tumor initiation and progression, functioning as both a suppressor and a promoter. The mechanisms underlying this dual role of TGF-beta remain unclear. TGF-beta exerts systemic immune suppression and inhibits host immunosurveillance. Neutralizing TGF-beta enhances CD8+ T-cell- and NK-cell-mediated anti-tumor immune responses. It also increases neutrophil-attracting chemokines resulting in recruitment and activation of neutrophils with an antitumor phenotype. In addition to its systemic effects, TGF-beta regulates infiltration of inflammatory/immune cells and cancer-associated fibroblasts in the tumor microenvironment causing direct changes in tumor cells. Understanding TGF-beta regulation at the interface of tumor and host immunity should provide insights into developing effective TGF-beta antagonists and biomarkers for patient selection and efficacy of TGF-beta antagonist treatment. Published by Elsevier Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy.

              Preexisting lymphocytic infiltration of tumors is associated with superior prognostic outcomes in a variety of cancers. Recent studies also suggest that lymphocytic responses may identify patients more likely to benefit from therapies targeting immune checkpoints, suggesting that therapeutic efficacy of immune checkpoint blockade can be enhanced through strategies that induce tumor inflammation. To achieve this effect, we explored the immunotherapeutic potential of oncolytic Newcastle disease virus (NDV). We find that localized intratumoral therapy of B16 melanoma with NDV induces inflammatory responses, leading to lymphocytic infiltrates and antitumor effect in distant (nonvirally injected) tumors without distant virus spread. The inflammatory effect coincided with distant tumor infiltration with tumor-specific CD4(+) and CD8(+) T cells, which was dependent on the identity of the virus-injected tumor. Combination therapy with localized NDV and systemic CTLA-4 blockade led to rejection of preestablished distant tumors and protection from tumor rechallenge in poorly immunogenic tumor models, irrespective of tumor cell line sensitivity to NDV-mediated lysis. Therapeutic effect was associated with marked distant tumor infiltration with activated CD8(+) and CD4(+) effector but not regulatory T cells, and was dependent on CD8(+) cells, natural killer cells, and type I interferon. Our findings demonstrate that localized therapy with oncolytic NDV induces inflammatory immune infiltrates in distant tumors, making them susceptible to systemic therapy with immunomodulatory antibodies, which provides a strong rationale for investigation of such combination therapies in the clinic.
                Bookmark

                Author and article information

                Journal
                Cancer Gene Therapy
                Cancer Gene Ther
                Springer Nature
                0929-1903
                1476-5500
                May 8 2018
                Article
                10.1038/s41417-018-0018-1
                29735993
                e1a47ea0-d228-4924-a245-c27d0db0e412
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article