26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Human haematopoietic stem cell development: from the embryo to the dish

      , , , , ,
      Development
      The Company of Biologists

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: found
          • Article: not found

          Humanized mice for immune system investigation: progress, promise and challenges.

          Significant advances in our understanding of the in vivo functions of human cells and tissues and the human immune system have resulted from the development of 'humanized' mouse strains that are based on severely immunodeficient mice with mutations in the interleukin-2 receptor common γ-chain locus. These mouse strains support the engraftment of a functional human immune system and permit detailed analyses of human immune biology, development and functions. In this Review, we discuss recent advances in the development and utilization of humanized mice, the lessons learnt, the remaining challenges and the promise of using humanized mice for the in vivo study of human immunology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hematopoietic stem cells derive directly from aortic endothelium during development

            A major goal of regenerative medicine is to instruct formation of multipotent, tissue-specific stem cells from induced pluripotent stem cells (iPSCs) for cell replacement therapies. Generation of hematopoietic stem cells (HSCs) from iPSCs or embryonic stem cells (ESCs) is not currently possible, however, necessitating a better understanding of how HSCs normally arise during embryonic development. We previously showed that hematopoiesis occurs through four distinct waves during zebrafish development, with HSCs arising in the final wave in close association with the dorsal aorta. Recent reports have suggested that murine HSCs derive from hemogenic endothelial cells (ECs) lining the aortic floor1,2. Additional in vitro studies have similarly suggested that the hematopoietic progeny of ESCs arise through intermediates with endothelial potential3,4. In this report, we have utilized the unique strengths of the zebrafish embryo to image directly the birth of HSCs from the ventral wall of the dorsal aorta. Utilizing combinations of fluorescent reporter transgenes, confocal timelapse microscopy and flow cytometry, we have identified and isolated the stepwise intermediates as aortic hemogenic endothelium transitions to nascent HSCs. Finally, using a permanent lineage tracing strategy, we demonstrate that the HSCs generated from hemogenic endothelium are the lineal founders of the adult hematopoietic system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blood stem cells emerge from aortic endothelium by a novel type of cell transition.

              The ontogeny of haematopoietic stem cells (HSCs) during embryonic development is still highly debated, especially their possible lineage relationship to vascular endothelial cells. The first anatomical site from which cells with long-term HSC potential have been isolated is the aorta-gonad-mesonephros (AGM), more specifically the vicinity of the dorsal aortic floor. But although some authors have presented evidence that HSCs may arise directly from the aortic floor into the dorsal aortic lumen, others support the notion that HSCs first emerge within the underlying mesenchyme. Here we show by non-invasive, high-resolution imaging of live zebrafish embryos, that HSCs emerge directly from the aortic floor, through a stereotyped process that does not involve cell division but a strong bending then egress of single endothelial cells from the aortic ventral wall into the sub-aortic space, and their concomitant transformation into haematopoietic cells. The process is polarized not only in the dorso-ventral but also in the rostro-caudal versus medio-lateral direction, and depends on Runx1 expression: in Runx1-deficient embryos, the exit events are initially similar, but much rarer, and abort into violent death of the exiting cell. These results demonstrate that the aortic floor is haemogenic and that HSCs emerge from it into the sub-aortic space, not by asymmetric cell division but through a new type of cell behaviour, which we call an endothelial haematopoietic transition.
                Bookmark

                Author and article information

                Journal
                Development
                Development
                The Company of Biologists
                0950-1991
                1477-9129
                July 04 2017
                July 01 2017
                July 04 2017
                July 01 2017
                : 144
                : 13
                : 2323-2337
                Article
                10.1242/dev.134866
                28676567
                e1ad9ce4-5416-476e-8e29-7ab8ab4d22b9
                © 2017

                http://www.biologists.com/user-licence-1-1

                History

                Comments

                Comment on this article