27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Docking Simulations Provide Insights in the Substrate Binding Sites and Possible Substrates of the ABCC6 Transporter

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human ATP-binding cassette family C member 6 (ABCC6) gene encodes an ABC transporter protein (ABCC6), primarily expressed in liver and kidney. Mutations in the ABCC6 gene cause pseudoxanthoma elasticum (PXE), an autosomal recessive connective tissue disease characterized by ectopic mineralization of the elastic fibers. The pathophysiology underlying PXE is incompletely understood, which can at least partly be explained by the undetermined nature of the ABCC6 substrates as well as the unknown substrate recognition and binding sites. Several compounds, including anionic glutathione conjugates (N-ethylmaleimide; NEM-GS) and leukotriene C4 (LTC4) were shown to be modestly transported in vitro; conversely, vitamin K3 (VK3) was demonstrated not to be transported by ABCC6. To predict the possible substrate binding pockets of the ABCC6 transporter, we generated a 3D homology model of ABCC6 in both open and closed conformation, qualified for molecular docking and virtual screening approaches. By docking 10 reported in vitro substrates in our ABCC6 3D homology models, we were able to predict the substrate binding residues of ABCC6. Further, virtual screening of 4651 metabolites from the Human Serum Metabolome Database against our open conformation model disclosed possible substrates for ABCC6, which are mostly lipid and biliary secretion compounds, some of which are found to be involved in mineralization. Docking of these possible substrates in the closed conformation model also showed high affinity. Virtual screening expands this possibility to explore more compounds that can interact with ABCC6, and may aid in understanding the mechanisms leading to PXE.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Structure validation by Calpha geometry: phi,psi and Cbeta deviation.

          Geometrical validation around the Calpha is described, with a new Cbeta measure and updated Ramachandran plot. Deviation of the observed Cbeta atom from ideal position provides a single measure encapsulating the major structure-validation information contained in bond angle distortions. Cbeta deviation is sensitive to incompatibilities between sidechain and backbone caused by misfit conformations or inappropriate refinement restraints. A new phi,psi plot using density-dependent smoothing for 81,234 non-Gly, non-Pro, and non-prePro residues with B < 30 from 500 high-resolution proteins shows sharp boundaries at critical edges and clear delineation between large empty areas and regions that are allowed but disfavored. One such region is the gamma-turn conformation near +75 degrees,-60 degrees, counted as forbidden by common structure-validation programs; however, it occurs in well-ordered parts of good structures, it is overrepresented near functional sites, and strain is partly compensated by the gamma-turn H-bond. Favored and allowed phi,psi regions are also defined for Pro, pre-Pro, and Gly (important because Gly phi,psi angles are more permissive but less accurately determined). Details of these accurate empirical distributions are poorly predicted by previous theoretical calculations, including a region left of alpha-helix, which rates as favorable in energy yet rarely occurs. A proposed factor explaining this discrepancy is that crowding of the two-peptide NHs permits donating only a single H-bond. New calculations by Hu et al. [Proteins 2002 (this issue)] for Ala and Gly dipeptides, using mixed quantum mechanics and molecular mechanics, fit our nonrepetitive data in excellent detail. To run our geometrical evaluations on a user-uploaded file, see MOLPROBITY (http://kinemage.biochem.duke.edu) or RAMPAGE (http://www-cryst.bioc.cam.ac.uk/rampage). Copyright 2003 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            PrDOS: prediction of disordered protein regions from amino acid sequence

            PrDOS is a server that predicts the disordered regions of a protein from its amino acid sequence (http://prdos.hgc.jp). The server accepts a single protein amino acid sequence, in either plain text or FASTA format. The prediction system is composed of two predictors: a predictor based on local amino acid sequence information and one based on template proteins. The server combines the results of the two predictors and returns a two-state prediction (order/disorder) and a disorder probability for each residue. The prediction results are sent by e-mail, and the server also provides a web-interface to check the results.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with all-cause and cardiovascular mortality.

              In cross-sectional studies, low serum levels of 25-hydroxyvitamin D are associated with higher prevalence of cardiovascular risk factors and disease. This study aimed to determine whether endogenous 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels are related to all-cause and cardiovascular mortality. Prospective cohort study of 3258 consecutive male and female patients (mean [SD] age, 62 [10] years) scheduled for coronary angiography at a single tertiary center. We formed quartiles according to 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels within each month of blood drawings. The main outcome measures were all-cause and cardiovascular deaths. During a median follow-up period of 7.7 years, 737 patients (22.6%) died, including 463 deaths from cardiovascular causes. Multivariate-adjusted hazard ratios (HRs) for patients in the lower two 25-hydroxyvitamin D quartiles (median, 7.6 and 13.3 ng/mL [to convert 25-hydroxyvitamin D levels to nanomoles per liter, multiply by 2.496]) were higher for all-cause mortality (HR, 2.08; 95% confidence interval [CI], 1.60-2.70; and HR, 1.53; 95% CI, 1.17-2.01; respectively) and for cardiovascular mortality (HR, 2.22; 95% CI, 1.57-3.13; and HR, 1.82; 95% CI, 1.29-2.58; respectively) compared with patients in the highest 25-hydroxyvitamin D quartile (median, 28.4 ng/mL). Similar results were obtained for patients in the lowest 1,25-dihydroxyvitamin D quartile. These effects were independent of coronary artery disease, physical activity level, Charlson Comorbidity Index, variables of mineral metabolism, and New York Heart Association functional class. Low 25-hydroxyvitamin D levels were significantly correlated with variables of inflammation (C-reactive protein and interleukin 6 levels), oxidative burden (serum phospholipid and glutathione levels), and cell adhesion (vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 levels). Low 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels are independently associated with all-cause and cardiovascular mortality. A causal relationship has yet to be proved by intervention trials using vitamin D.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                25 July 2014
                : 9
                : 7
                : e102779
                Affiliations
                [1 ]Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
                [2 ]Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
                [3 ]Swapnojaatra Bioresearch Laboratory, DataSoft Systems, Dhaka, Bangladesh
                University of Technology Sydney, Australia
                Author notes

                ¶ These authors also contributed equally to this work.

                Competing Interests: Abdullah Zubaer, Simrika Thapa, and Bijendra Khadka are employed by DataSoft Systems, Ltd. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: MJH AZ ST BK ADP OMV. Performed the experiments: MJH AZ ST BK OMV. Analyzed the data: MJH AZ ST ADP OMV. Contributed reagents/materials/analysis tools: MJH AZ ST BK OMV. Wrote the paper: MJH AZ ST ADP OMV.

                Article
                PONE-D-13-46326
                10.1371/journal.pone.0102779
                4111409
                25062064
                e1ae8e3e-e2a5-42e2-bf6a-543e55336aaf
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 November 2013
                : 24 June 2014
                Page count
                Pages: 15
                Funding
                This study was supported by a BOF research fellowship from the Ghent University to Olivier M. Vanakker, a research grant (G.0241.11N) of the Research Foundation - Flanders (Belgium) to Anne De Paepe and Olivier M. Vanakker, and a Methusalem grant (BOF08/01M01108) from the Ghent University to Anne De Paepe. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Proteins
                Protein Structure
                Biochemical Simulations
                Biomacromolecule-Ligand Interactions
                Biophysics
                Biophysical Simulations
                Computational Biology
                Computer and Information Sciences
                Computerized Simulations
                Medicine and Health Sciences
                Clinical Medicine
                Metabolic Disorders
                Pharmacology
                Drug Research and Development

                Uncategorized
                Uncategorized

                Comments

                Comment on this article