23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Homocysteine in the Ischemic Stroke and Development of Ischemic Tolerance

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Homocysteine (Hcy) is a toxic, sulfur-containing intermediate of methionine metabolism. Hyperhomocysteinemia (hHcy), as a consequence of impaired Hcy metabolism or defects in crucial co-factors that participate in its recycling, is assumed as an independent human stroke risk factor. Neural cells are sensitive to prolonged hHcy treatment, because Hcy cannot be metabolized either by the transsulfuration pathway or by the folate/vitamin B12 independent remethylation pathway. Its detrimental effect after ischemia-induced damage includes accumulation of reactive oxygen species (ROS) and posttranslational modifications of proteins via homocysteinylation and thiolation. Ischemic preconditioning (IPC) is an adaptive response of the CNS to sub-lethal ischemia, which elevates tissues tolerance to subsequent ischemia. The main focus of this review is on the recent data on homocysteine metabolism and mechanisms of its neurotoxicity. In this context, the review documents an increased oxidative stress and functional modification of enzymes involved in redox balance in experimentally induced hyperhomocysteinemia. It also gives an interpretation whether hyperhomocysteinemia alone or in combination with IPC affects the ischemia-induced neurodegenerative changes as well as intracellular signaling. Studies document that hHcy alone significantly increased Fluoro-Jade C- and TUNEL-positive cell neurodegeneration in the rat hippocampus as well as in the cortex. IPC, even if combined with hHcy, could still preserve the neuronal tissue from the lethal ischemic effects. This review also describes the changes in the mitogen-activated protein kinase (MAPK) protein pathways following ischemic injury and IPC. These studies provide evidence for the interplay and tight integration between ERK and p38 MAPK signaling mechanisms in response to the hHcy and also in association of hHcy with ischemia/IPC challenge in the rat brain. Further investigations of the protective factors leading to ischemic tolerance and recognition of the co-morbid risk factors would result in development of new avenues for exploration of novel therapeutics against ischemia and stroke.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Homocysteine and cardiovascular disease.

          An elevated level of total homocysteine (tHcy) in blood, denoted hyperhomocysteinemia, is emerging as a prevalent and strong risk factor for atherosclerotic vascular disease in the coronary, cerebral, and peripheral vessels, and for arterial and venous thromboembolism. The basis for these conclusions is data from about 80 clinical and epidemiological studies including more than 10,000 patients. Elevated tHcy confers a graded risk with no threshold, is independent of but may enhance the effect of the conventional risk factors, and seems to be a particularly strong predictor of cardiovascular mortality. Hyperhomocysteinemia is attributed to commonly occurring genetic and acquired factors including deficiencies of folate and vitamin B12. Supplementation with B-vitamins, in particular with folic acid, is an efficient, safe, and inexpensive means to reduce an elevated tHcy level. Studies are now in progress to establish whether such therapy will reduce cardiovascular risk.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia.

            Mild to moderate hyperhomocysteinemia is a risk factor for neurodegenerative diseases. Human studies suggest that homocysteine (Hcy) plays a role in brain damage, cognitive and memory decline. Numerous studies in recent years investigated the role of Hcy as a cause of brain damage. Hcy itself or folate and vitamin B12 deficiency can cause disturbed methylation and/or redox potentials, thus promoting calcium influx, amyloid and tau protein accumulation, apoptosis, and neuronal death. The Hcy effect may also be mediated by activating the N-methyl-D-aspartate receptor subtype. Numerous neurotoxic effects of Hcy can be blocked by folate, glutamate receptor antagonists, or various antioxidants. This review describes the most important mechanisms of Hcy neurotoxicity and pharmacological agents known to reverse Hcy effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity.

              Elevated plasma levels of the sulfur-containing amino acid homocysteine increase the risk for atherosclerosis, stroke, and possibly Alzheimer's disease, but the underlying mechanisms are unknown. We now report that homocysteine induces apoptosis in rat hippocampal neurons. DNA strand breaks and associated activation of poly-ADP-ribose polymerase (PARP) and NAD depletion occur rapidly after exposure to homocysteine and precede mitochondrial dysfunction, oxidative stress, and caspase activation. The PARP inhibitor 3-aminobenzamide (3AB) protects neurons against homocysteine-induced NAD depletion, loss of mitochondrial transmembrane potential, and cell death, demonstrating a requirement for PARP activation and/or NAD depletion in homocysteine-induced apoptosis. Caspase inhibition accelerates the loss of mitochondrial potential and shifts the mode of cell death to necrosis; inhibition of PARP with 3AB attenuates this effect of caspase inhibition. Homocysteine markedly increases the vulnerability of hippocampal neurons to excitotoxic and oxidative injury in cell culture and in vivo, suggesting a mechanism by which homocysteine may contribute to the pathogenesis of neurodegenerative disorders.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                23 November 2016
                2016
                : 10
                Affiliations
                [1] 1Institute of Medical Biochemistry and BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava Martin, Slovakia
                [2] 2Institute of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava Martin, Slovakia
                Author notes

                Edited by: Elena Rybnikova, Russian Academy of Sciences, Russia

                Reviewed by: Pavle R. Andjus, University of Belgrade, Serbia; Fabrizio Michetti, Università Cattolica del Sacro Cuore, Italy

                *Correspondence: Ján Lehotský lehotsky@ 123456jfmed.uniba.sk

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2016.00538
                5120102
                e1b0fb3e-8e62-40bf-b84a-4675e103e3a0
                Copyright © 2016 Lehotský, Tothová, Kovalská, Dobrota, Beňová, Kalenská and Kaplán.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 119, Pages: 16, Words: 13678
                Categories
                Neuroscience
                Review

                Comments

                Comment on this article