20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cell Proliferation in Cutaneous Malignant Melanoma: Relationship with Neoplastic Progression

      review-article
      *
      ISRN Dermatology
      International Scholarly Research Network

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The establishment of the diagnosis of cutaneous malignant melanoma (CMM) always calls for histopathological confirmation. Further to the recognition of the CMM aspects, immunohistochemistry is helpful, in particular, in determining the size of the replicative compartment and the activity in each of the cell cycle phases (G 1, S, G 2, M). The involvement of cancer stem cells and transient amplifier cells in CMM genesis is beyond doubt. The proliferation activity is indicative of the neoplastic progression and is often related to the clinical growth rate of the neoplasm. It allows to distinguish high-risk CMM commonly showing a high growth rate, from those CMMs of lower malignancy associated with a more limited growth rate. The recruitment and progression of CMM cells in the cell cycle of proliferation depend on mitogen-activated protein kinase (MAPK) pathway and result from a loss of control normally involving a series of key regulatory cyclins. In addition, the apoptotic pathways potentially counteracting any excess in proliferative activity are out of the dependency of specific regulatory molecular mechanisms. Key molecular components involved in the deregulation of the growth fraction, the cell cycle phases of proliferation, and apoptosis are presently described in CMM.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of cells initiating human melanomas.

          Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma.

            Although metastasis is the leading cause of cancer-related death, it is not clear why some patients with localized cancer develop metastatic disease after complete resection of their primary tumor. Such relapses have been attributed to tumor cells that disseminate early and remain dormant for prolonged periods of time; however, little is known about the control of these disseminated tumor cells. Here, we have used a spontaneous mouse model of melanoma to investigate tumor cell dissemination and immune control of metastatic outgrowth. Tumor cells were found to disseminate throughout the body early in development of the primary tumor, even before it became clinically detectable. The disseminated tumor cells remained dormant for varying periods of time depending on the tissue, resulting in staggered metastatic outgrowth. Dormancy in the lung was associated with reduced proliferation of the disseminated tumor cells relative to the primary tumor. This was mediated, at least in part, by cytostatic CD8+ T cells, since depletion of these cells resulted in faster outgrowth of visceral metastases. Our findings predict that immune responses favoring dormancy of disseminated tumor cells, which we propose to be the seed of subsequent macroscopic metastases, are essential for prolonging the survival of early stage cancer patients and suggest that therapeutic strategies designed to reinforce such immune responses may produce marked benefits in these patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature.

              The molecular biology of metastatic potential in melanoma has been studied many times previously and changes in the expression of many genes have been linked to metastatic behaviour. What is lacking is a systematic characterization of the regulatory relationships between genes whose expression is related to metastatic potential. Such a characterization would produce a molecular taxonomy for melanoma which could feasibly be used to identify epigenetic mechanisms behind changes in metastatic behaviour. To achieve this we carried out three separate DNA microarray analyses on a total of 86 cultures of melanoma. Significantly, multiple testing correction revealed that previous reports describing correlations of gene expression with activating mutations in BRAF or NRAS were incorrect and that no gene expression patterns correlate with the mutation status of these MAPK pathway components. Instead, we identified three different sample cohorts (A, B and C) and found that these cohorts represent melanoma groups of differing metastatic potential. Cohorts A and B were susceptible to transforming growth factor-beta (TGFbeta)-mediated inhibition of proliferation and had low motility. Cohort C was resistant to TGFbeta and demonstrated high motility. Meta-analysis of the data against previous studies linking gene expression and phenotype confirmed that cohorts A and C represent transcription signatures of weakly and strongly metastatic melanomas, respectively. Gene expression co-regulation suggested that signalling via TGFbeta-type and Wnt/beta-catenin pathways underwent considerable change between cohorts. These results suggest a model for the transition from weakly to strongly metastatic melanomas in which TGFbeta-type signalling upregulates genes expressing vasculogenic/extracellular matrix remodelling factors and Wnt signal inhibitors, coinciding with a downregulation of genes downstream of Wnt signalling.
                Bookmark

                Author and article information

                Journal
                ISRN Dermatol
                ISRN Dermatol
                DERMATOLOGY
                ISRN Dermatology
                International Scholarly Research Network
                2090-4592
                2090-4606
                2012
                11 January 2012
                : 2012
                : 828146
                Affiliations
                Department of Dermatopathology, University Hospital of Liège, 4000 Liège, Belgium
                Author notes

                Academic Editors: S.-C. Chao and C. Johansen

                Article
                10.5402/2012/828146
                3265211
                22363864
                e1ca0fb8-58f4-441a-93a3-f514b9bc7ba5
                Copyright © 2012 G. E. Piérard.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 November 2011
                : 30 November 2011
                Categories
                Review Article

                Dermatology
                Dermatology

                Comments

                Comment on this article