10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A cell surface display fluorescent biosensor for measuring MMP14 activity in real-time

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite numerous recent advances in imaging technologies, one continuing challenge for cell biologists and microscopists is the visualization and measurement of endogenous proteins as they function within living cells. Achieving this goal will provide a tool that investigators can use to associate cellular outcomes with the behavior and activity of many well-studied target proteins. Here, we describe the development of a plasmid-based fluorescent biosensor engineered to measure the location and activity of matrix metalloprotease-14 (MMP14). The biosensor design uses fluorogen-activating protein technology coupled with a MMP14-selective protease sequence to generate a binary, “switch-on” fluorescence reporter capable of measuring MMP14 location, activity, and temporal dynamics. The MMP14-fluorogen activating protein biosensor approach is applicable to both short and long-term imaging modalities and contains an adaptable module that can be used to study many membrane-bound proteases. This MMP14 biosensor promises to serve as a tool for the advancement of a broad range of investigations targeting MMP14 activity during cell migration in health and disease.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Acidic extracellular microenvironment and cancer

          Acidic extracellular pH is a major feature of tumor tissue, extracellular acidification being primarily considered to be due to lactate secretion from anaerobic glycolysis. Clinicopathological evidence shows that transporters and pumps contribute to H+ secretion, such as the Na+/H+ exchanger, the H+-lactate co-transporter, monocarboxylate transporters, and the proton pump (H+-ATPase); these may also be associated with tumor metastasis. An acidic extracellular pH not only activates secreted lysosomal enzymes that have an optimal pH in the acidic range, but induces the expression of certain genes of pro-metastatic factors through an intracellular signaling cascade that is different from hypoxia. In addition to lactate, CO2 from the pentose phosphate pathway is an alternative source of acidity, showing that hypoxia and extracellular acidity are, while being independent from each other, deeply associated with the cellular microenvironment. In this article, the importance of an acidic extracellular pH as a microenvironmental factor participating in tumor progression is reviewed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acid pH in tumors and its potential for therapeutic exploitation.

            Measurement of pH in tissue has shown that the microenvironment in tumors is generally more acidic than in normal tissues. Major mechanisms which lead to tumor acidity probably include the production of lactic acid and hydrolysis of ATP in hypoxic regions of tumors. Further reduction in pH may be achieved in some tumors by administration of glucose (+/- insulin) and by drugs such as hydralazine which modify the relative blood flow to tumors and normal tissues. Cells have evolved mechanisms for regulating their intracellular pH. The amiloride-sensitive Na+/H+ antiport and the DIDS-sensitive Na+-dependent HCO3-/Cl- exchanger appear to be the major mechanisms for regulating pHi under conditions of acid loading, although additional mechanisms may contribute to acid extrusion. Mitogen-induced initiation of proliferation in some cells is preceded by cytoplasmic alkalinization, usually triggered by stimulation of Na+/H+ exchange; proliferation of other cells can be induced without prior alkalinization. Mutant cells which lack Na+/H+ exchange activity have reduced or absent ability to generate solid tumors; a plausible explanation is the failure of such mutant cells to withstand acidic conditions that are generated during tumor growth. Studies in tissue culture have demonstrated that the combination of hypoxia and acid pHe is toxic to mammalian cells, whereas short exposures to either factor alone are not very toxic. This interaction may contribute to cell death and necrosis in solid tumors. Acidic pH may influence the outcome of tumor therapy. There are rather small effects of pHe on the response of cells to ionizing radiation but acute exposure to acid pHe causes a marked increase in response to hyperthermia; this effect is decreased in cells that are adapted to low pHe. Acidity may have varying effects on the response of cells to conventional anticancer drugs. Ionophores such as nigericin or CCCP cause acid loading of cells in culture and are toxic only at low pHc; this toxicity is enhanced by agents such as amiloride or DIDS which impair mechanisms involved in regulation of pHi. It is suggested that acid conditions in tumors might allow the development of new and relatively specific types of therapy which are directed against mechanisms which regulate pHi under acid conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia.

              When migrating away from a primary tumour, cancer cells interact with and remodel the extracellular matrix (ECM). Matrix metalloproteinases (MMPs), and in particular the transmembrane MT1-MMP (also known as MMP-14), are key enzymes in tumour-cell invasion. Results from recent in vitro studies highlight that MT1-MMP is implicated both in the breaching of basement membranes by tumour cells and in cell invasion through interstitial type-I collagen tissues. Remarkably, MT1-MMP accumulates at invadopodia, which are specialized ECM-degrading membrane protrusions of invasive cells. Here we review current knowledge about MT1-MMP trafficking and its importance for the regulation of protease activity at invadopodia. In invasive cells, endocytosis of MT1-MMP by clathrin- and caveolae-dependent pathways can be counteracted by several mechanisms, which leads to protease stabilization at the cell surface and increased pericellular degradation of the matrix. Furthermore, the recent identification of cellular components that control delivery of MT1-MMP to invadopodia brings new insight into mechanisms of cancer-cell invasion and reveals potential pharmacological targets.
                Bookmark

                Author and article information

                Contributors
                k.myers@usciences.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                12 April 2018
                12 April 2018
                2018
                : 8
                : 5916
                Affiliations
                ISNI 0000 0000 8794 7643, GRID grid.267627.0, Department of Biological Sciences, , University of the Sciences in Philadelphia, ; Philadelphia, PA 19104 USA
                Author information
                http://orcid.org/0000-0003-2994-4032
                http://orcid.org/0000-0003-4677-5146
                Article
                24080
                10.1038/s41598-018-24080-0
                5897415
                29651043
                e1d36eb7-0050-40e0-b71f-c60c0c7244cc
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 November 2017
                : 23 March 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article