21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4’s in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4’s physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4) and Pam18-2) and known (Tim17-2) substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation.

          Most mitochondrial proteins possess N-terminal presequences that are required for targeting and import into the organelle. Upon import, presequences are cleaved off by matrix processing peptidases and subsequently degraded by the peptidasome Cym1/PreP, which also degrades Amyloid-beta peptides (Aβ). Here we find that impaired turnover of presequence peptides results in feedback inhibition of presequence processing enzymes. Moreover, Aβ inhibits degradation of presequence peptides by PreP, resulting in accumulation of mitochondrial preproteins and processing intermediates. Dysfunctional preprotein maturation leads to rapid protein degradation and an imbalanced organellar proteome. Our findings reveal a general mechanism by which Aβ peptide can induce the multiple diverse mitochondrial dysfunctions accompanying Alzheimer's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria.

            Mutations in subunits of mitochondrial m-AAA proteases in the inner membrane cause neurodegeneration in spinocerebellar ataxia (SCA28) and hereditary spastic paraplegia (HSP7). m-AAA proteases preserve mitochondrial proteostasis, mitochondrial morphology, and efficient OXPHOS activity, but the cause for neuronal loss in disease is unknown. We have determined the neuronal interactome of m-AAA proteases in mice and identified a complex with C2ORF47 (termed MAIP1), which counteracts cell death by regulating the assembly of the mitochondrial Ca(2+) uniporter MCU. While MAIP1 assists biogenesis of the MCU subunit EMRE, the m-AAA protease degrades non-assembled EMRE and ensures efficient assembly of gatekeeper subunits with MCU. Loss of the m-AAA protease results in accumulation of constitutively active MCU-EMRE channels lacking gatekeeper subunits in neuronal mitochondria and facilitates mitochondrial Ca(2+) overload, mitochondrial permeability transition pore opening, and neuronal death. Together, our results explain neuronal loss in m-AAA protease deficiency by deregulated mitochondrial Ca(2+) homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Evolution and structural organization of the mitochondrial contact site (MICOS) complex and the mitochondrial intermembrane space bridging (MIB) complex.

              We have analyzed the distribution of mitochondrial contact site and cristae organizing system (MICOS) complex proteins and mitochondrial intermembrane space bridging complex (MIB) proteins over (sub)complexes and over species. The MICOS proteins are associated with the formation and maintenance of mitochondrial cristae. Indeed, the presence of MICOS genes in genomes correlates well with the presence of cristae: all cristae containing species have at least one MICOS gene and cristae-less species have none. Mic10 is the most widespread MICOS gene, while Mic60 appears be the oldest one, as it originates in the ancestors of mitochondria, the proteobacteria. In proteobacteria the gene occurs in clusters with genes involved in heme synthesis while the protein has been observed in intracellular membranes of the alphaproteobacterium Rhodobacter sphaeroides. In contrast, Mic23 and Mic27 appear to be the youngest MICOS proteins, as they only occur in opisthokonts. The remaining MICOS proteins, Mic10, Mic19, Mic25 and Mic12, the latter we show to be orthologous to human C19orf70/QIL1, trace back to the root of the eukaryotes. Of the remaining MIB proteins, also DNAJC11 shows a high correlation with the presence of cristae. In mitochondrial protein complexome profiles, the MIB complex occurs as a defined complex and as separate subcomplexes, potentially reflecting various assembly stages. We find three main forms of the complex: A) The MICOS complex, containing all the MICOS proteins, B) a membrane bridging subcomplex, containing in addition SAMM50, MTX2 and the previously uncharacterized MTX3, and C) the complete MIB complex containing in addition DNAJC11 and MTX1.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                18 November 2017
                November 2017
                : 18
                : 11
                : 2455
                Affiliations
                [1 ]Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14A, 50-383 Wroclaw, Poland
                [2 ]Present address: Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, A-1030 Vienna, Austria; katarzyna.parys@ 123456gmi.oeaw.ac.at
                Author notes
                Author information
                https://orcid.org/0000-0003-1449-4243
                Article
                ijms-18-02455
                10.3390/ijms18112455
                5713422
                29156584
                e1da8534-04ce-45bd-8659-8ecf580d1578
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 October 2017
                : 16 November 2017
                Categories
                Communication

                Molecular biology
                aaa protease,atp-dependent proteolysis,mitochondria,inner mitochondrial membrane proteostasis,carbonylated proteins

                Comments

                Comment on this article