10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Internal jugular vein variability predicts fluid responsiveness in cardiac surgical patients with mechanical ventilation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          To evaluate the efficacy of using internal jugular vein variability (IJVV) as an index of fluid responsiveness in mechanically ventilated patients after cardiac surgery.

          Methods

          Seventy patients were assessed after cardiac surgery. Hemodynamic data coupled with ultrasound evaluation of IJVV and inferior vena cava variability (IVCV) were collected and calculated at baseline, after a passive leg raising (PLR) test and after a 500-ml fluid challenge. Patients were divided into volume responders (increase in stroke volume ≥ 15%) and non-responders (increase in stroke volume < 15%). We compared the differences in measured variables between responders and non-responders and tested the ability of the indices to predict fluid responsiveness.

          Results

          Thirty-five (50%) patients were fluid responders. Responders presented higher IJVV, IVCV and stroke volume variation (SVV) compared with non-responders at baseline ( P < 0.05). The relationship between IJVV and SVV was moderately correlated ( r = 0.51, P < 0.01). The areas under the receiver operating characteristic (ROC) curves for predicting fluid responsiveness were 0.88 (CI 0.78–0.94) for IJVV compared with 0.83 (CI 0.72–0.91), 0.97 (CI 0.89–0.99), 0.91 (CI 0.82–0.97) for IVCV, SVV, and the increase in stroke volume in response to a PLR test, respectively.

          Conclusions

          Ultrasound-derived IJVV is an accurate, easily acquired noninvasive parameter of fluid responsiveness in mechanically ventilated postoperative cardiac surgery patients, with a performance similar to that of IVCV.

          Electronic supplementary material

          The online version of this article (10.1186/s13613-017-0347-5) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares.

          Central venous pressure (CVP) is used almost universally to guide fluid therapy in hospitalized patients. Both historical and recent data suggest that this approach may be flawed. A systematic review of the literature to determine the following: (1) the relationship between CVP and blood volume, (2) the ability of CVP to predict fluid responsiveness, and (3) the ability of the change in CVP (DeltaCVP) to predict fluid responsiveness. MEDLINE, Embase, Cochrane Register of Controlled Trials, and citation review of relevant primary and review articles. Reported clinical trials that evaluated either the relationship between CVP and blood volume or reported the associated between CVP/DeltaCVP and the change in stroke volume/cardiac index following a fluid challenge. From 213 articles screened, 24 studies met our inclusion criteria and were included for data extraction. The studies included human adult subjects, healthy control subjects, and ICU and operating room patients. Data were abstracted on study design, study size, study setting, patient population, correlation coefficient between CVP and blood volume, correlation coefficient (or receive operator characteristic [ROC]) between CVP/DeltaCVP and change in stroke index/cardiac index, percentage of patients who responded to a fluid challenge, and baseline CVP of the fluid responders and nonresponders. Metaanalytic techniques were used to pool data. The 24 studies included 803 patients; 5 studies compared CVP with measured circulating blood volume, while 19 studies determined the relationship between CVP/DeltaCVP and change in cardiac performance following a fluid challenge. The pooled correlation coefficient between CVP and measured blood volume was 0.16 (95% confidence interval [CI], 0.03 to 0.28). Overall, 56+/-16% of the patients included in this review responded to a fluid challenge. The pooled correlation coefficient between baseline CVP and change in stroke index/cardiac index was 0.18 (95% CI, 0.08 to 0.28). The pooled area under the ROC curve was 0.56 (95% CI, 0.51 to 0.61). The pooled correlation between DeltaCVP and change in stroke index/cardiac index was 0.11 (95% CI, 0.015 to 0.21). Baseline CVP was 8.7+/-2.32 mm Hg [mean+/-SD] in the responders as compared to 9.7+/-2.2 mm Hg in nonresponders (not significant). This systematic review demonstrated a very poor relationship between CVP and blood volume as well as the inability of CVP/DeltaCVP to predict the hemodynamic response to a fluid challenge. CVP should not be used to make clinical decisions regarding fluid management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature.

            : A systematic review of the literature to determine the ability of dynamic changes in arterial waveform-derived variables to predict fluid responsiveness and compare these with static indices of fluid responsiveness. The assessment of a patient's intravascular volume is one of the most difficult tasks in critical care medicine. Conventional static hemodynamic variables have proven unreliable as predictors of volume responsiveness. Dynamic changes in systolic pressure, pulse pressure, and stroke volume in patients undergoing mechanical ventilation have emerged as useful techniques to assess volume responsiveness. : MEDLINE, EMBASE, Cochrane Register of Controlled Trials and citation review of relevant primary and review articles. : Clinical studies that evaluated the association between stroke volume variation, pulse pressure variation, and/or stroke volume variation and the change in stroke volume/cardiac index after a fluid or positive end-expiratory pressure challenge. : Data were abstracted on study design, study size, study setting, patient population, and the correlation coefficient and/or receiver operating characteristic between the baseline systolic pressure variation, stroke volume variation, and/or pulse pressure variation and the change in stroke index/cardiac index after a fluid challenge. When reported, the receiver operating characteristic of the central venous pressure, global end-diastolic volume index, and left ventricular end-diastolic area index were also recorded. Meta-analytic techniques were used to summarize the data. Twenty-nine studies (which enrolled 685 patients) met our inclusion criteria. Overall, 56% of patients responded to a fluid challenge. The pooled correlation coefficients between the baseline pulse pressure variation, stroke volume variation, systolic pressure variation, and the change in stroke/cardiac index were 0.78, 0.72, and 0.72, respectively. The area under the receiver operating characteristic curves were 0.94, 0.84, and 0.86, respectively, compared with 0.55 for the central venous pressure, 0.56 for the global end-diastolic volume index, and 0.64 for the left ventricular end-diastolic area index. The mean threshold values were 12.5 +/- 1.6% for the pulse pressure variation and 11.6 +/- 1.9% for the stroke volume variation. The sensitivity, specificity, and diagnostic odds ratio were 0.89, 0.88, and 59.86 for the pulse pressure variation and 0.82, 0.86, and 27.34 for the stroke volume variation, respectively. : Dynamic changes of arterial waveform-derived variables during mechanical ventilation are highly accurate in predicting volume responsiveness in critically ill patients with an accuracy greater than that of traditional static indices of volume responsiveness. This technique, however, is limited to patients who receive controlled ventilation and who are not breathing spontaneously.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure.

              In mechanically ventilated patients with acute circulatory failure related to sepsis, we investigated whether the respiratory changes in arterial pressure could be related to the effects of volume expansion (VE) on cardiac index (CI). Forty patients instrumented with indwelling systemic and pulmonary artery catheters were studied before and after VE. Maximal and minimal values of pulse pressure (Pp(max) and Pp(min)) and systolic pressure (Ps(max) and Ps(min)) were determined over one respiratory cycle. The respiratory changes in pulse pressure (DeltaPp) were calculated as the difference between Pp(max) and Pp(min) divided by the mean of the two values and were expressed as a percentage. The respiratory changes in systolic pressure (DeltaPs) were calculated using a similar formula. The VE-induced increase in CI was >/= 15% in 16 patients (responders) and < 15% in 24 patients (nonresponders). Before VE, DeltaPp (24 +/- 9 versus 7 +/- 3%, p < 0.001) and DeltaPs (15 +/- 5 versus 6 +/- 3%, p < 0.001) were higher in responders than in nonresponders. Receiver operating characteristic (ROC) curves analysis showed that DeltaPp was a more accurate indicator of fluid responsiveness than DeltaPs. Before VE, a DeltaPp value of 13% allowed discrimination between responders and nonresponders with a sensitivity of 94% and a specificity of 96%. VE-induced changes in CI closely correlated with DeltaPp before volume expansion (r(2) = 0. 85, p < 0.001). VE decreased DeltaPp from 14 +/- 10 to 7 +/- 5% (p < 0.001) and VE-induced changes in DeltaPp correlated with VE-induced changes in CI (r(2) = 0.72, p < 0.001). It was concluded that in mechanically ventilated patients with acute circulatory failure related to sepsis, analysis of DeltaPp is a simple method for predicting and assessing the hemodynamic effects of VE, and that DeltaPp is a more reliable indicator of fluid responsiveness than DeltaPs.
                Bookmark

                Author and article information

                Contributors
                ma.guoguang@zs-hospital.sh.cn
                hao.guangwei@zs-hospital.sh.cn
                yang.xiaomei@zs-hospital.sh.cn
                zhu.duming@zs-hospital.sh.cn
                liu.lan@zs-hospital.sh.cn
                liu.hua@zs-hospital.sh.cn
                +86-21-64041990-3659 , tu.guowei@zs-hospital.sh.cn
                +86-21-64041990-3659 , luo.zhe@zs-hospital.sh.cn
                Journal
                Ann Intensive Care
                Ann Intensive Care
                Annals of Intensive Care
                Springer International Publishing (Cham )
                2110-5820
                16 January 2018
                16 January 2018
                2018
                : 8
                : 6
                Affiliations
                ISNI 0000 0001 0125 2443, GRID grid.8547.e, Department of Critical Care Medicine, Zhongshan Hospital, , Fudan University, ; No. 180 Fenglin Road, Shanghai, 200032 Xuhui District People’s Republic of China
                Article
                347
                10.1186/s13613-017-0347-5
                5770347
                29340792
                e1dbb73b-b026-4e93-9fec-609ba1b29656
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 5 April 2017
                : 26 December 2017
                Funding
                Funded by: Research Funds of Zhong Shan Hospital
                Award ID: 2017ZSYXQN23
                Award ID: 2016ZSQN23
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81500067
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100007219, Natural Science Foundation of Shanghai;
                Award ID: 16ZR1405600
                Award Recipient :
                Funded by: Health and Family Planning Commission of Shanghai
                Award ID: 20154Y011
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Emergency medicine & Trauma
                internal jugular veins,inferior vena cava,stroke volume variation,fluid responsiveness,cardiac surgery

                Comments

                Comment on this article