43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Examining the Central and Peripheral Processes of Written Word Production Through Meta-Analysis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Producing written words requires “central” cognitive processes (such as orthographic long-term and working memory) as well as more peripheral processes responsible for generating the motor actions needed for producing written words in a variety of formats (handwriting, typing, etc.). In recent years, various functional neuroimaging studies have examined the neural substrates underlying the central and peripheral processes of written word production. This study provides the first quantitative meta-analysis of these studies by applying activation likelihood estimation (ALE) methods (Turkeltaub et al., 2002). For alphabet languages, we identified 11 studies (with a total of 17 experimental contrasts) that had been designed to isolate central and/or peripheral processes of word spelling (total number of participants = 146). Three ALE meta-analyses were carried out. One involved the complete set of 17 contrasts; two others were applied to subsets of contrasts to distinguish the neural substrates of central from peripheral processes. These analyses identified a network of brain regions reliably associated with the central and peripheral processes of word spelling. Among the many significant results, is the finding that the regions with the greatest correspondence across studies were in the left inferior temporal/fusiform gyri and left inferior frontal gyrus. Furthermore, although the angular gyrus (AG) has traditionally been identified as a key site within the written word production network, none of the meta-analyses found it to be a consistent site of activation, identifying instead a region just superior/medial to the left AG in the left posterior intraparietal sulcus. These meta-analyses and the discussion of results provide a valuable foundation upon which future studies that examine the neural basis of written word production can build.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          From sensation to cognition.

          M. Mesulam (1998)
          Sensory information undergoes extensive associative elaboration and attentional modulation as it becomes incorporated into the texture of cognition. This process occurs along a core synaptic hierarchy which includes the primary sensory, upstream unimodal, downstream unimodal, heteromodal, paralimbic and limbic zones of the cerebral cortex. Connections from one zone to another are reciprocal and allow higher synaptic levels to exert a feedback (top-down) influence upon earlier levels of processing. Each cortical area provides a nexus for the convergence of afferents and divergence of efferents. The resultant synaptic organization supports parallel as well as serial processing, and allows each sensory event to initiate multiple cognitive and behavioural outcomes. Upstream sectors of unimodal association areas encode basic features of sensation such as colour, motion, form and pitch. More complex contents of sensory experience such as objects, faces, word-forms, spatial locations and sound sequences become encoded within downstream sectors of unimodal areas by groups of coarsely tuned neurons. The highest synaptic levels of sensory-fugal processing are occupied by heteromodal, paralimbic and limbic cortices, collectively known as transmodal areas. The unique role of these areas is to bind multiple unimodal and other transmodal areas into distributed but integrated multimodal representations. Transmodal areas in the midtemporal cortex, Wernicke's area, the hippocampal-entorhinal complex and the posterior parietal cortex provide critical gateways for transforming perception into recognition, word-forms into meaning, scenes and events into experiences, and spatial locations into targets for exploration. All cognitive processes arise from analogous associative transformations of similar sets of sensory inputs. The differences in the resultant cognitive operation are determined by the anatomical and physiological properties of the transmodal node that acts as the critical gateway for the dominant transformation. Interconnected sets of transmodal nodes provide anatomical and computational epicentres for large-scale neurocognitive networks. In keeping with the principles of selectively distributed processing, each epicentre of a large-scale network displays a relative specialization for a specific behavioural component of its principal neurospychological domain. The destruction of transmodal epicentres causes global impairments such as multimodal anomia, neglect and amnesia, whereas their selective disconnection from relevant unimodal areas elicits modality-specific impairments such as prosopagnosia, pure word blindness and category-specific anomias. The human brain contains at least five anatomically distinct networks. The network for spatial awareness is based on transmodal epicentres in the posterior parietal cortex and the frontal eye fields; the language network on epicentres in Wernicke's and Broca's areas; the explicit memory/emotion network on epicentres in the hippocampal-entorhinal complex and the amygdala; the face-object recognition network on epicentres in the midtemporal and temporopolar cortices; and the working memory-executive function network on epicentres in the lateral prefrontal cortex and perhaps the posterior parietal cortex. Individual sensory modalities give rise to streams of processing directed to transmodal nodes belonging to each of these networks. The fidelity of sensory channels is actively protected through approximately four synaptic levels of sensory-fugal processing. The modality-specific cortices at these four synaptic levels encode the most veridical representations of experience. Attentional, motivational and emotional modulations, including those related to working memory, novelty-seeking and mental imagery, become increasingly more pronounced within downstream components of unimodal areas, where they help to create a highly edited subjective version of the world. (ABSTRACT TRUNCATED)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation.

            A number of neuroimaging findings have been interpreted as evidence that the left inferior frontal gyrus (IFG) subserves retrieval of semantic knowledge. We provide a fundamentally different interpretation, that it is not retrieval of semantic knowledge per se that is associated with left IFG activity but rather selection of information among competing alternatives from semantic memory. Selection demands were varied across three semantic tasks in a single group of subjects. Functional magnetic resonance imaging signal in overlapping regions of left IFG was dependent on selection demands in all three tasks. In addition, the degree of semantic processing was varied independently of selection demands in one of the tasks. The absence of left IFG activity for this comparison counters the argument that the effects of selection can be attributed solely to variations in degree of semantic retrieval. Our findings suggest that it is selection, not retrieval, of semantic knowledge that drives activity in the left IFG.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How learning to read changes the cortical networks for vision and language.

              Does literacy improve brain function? Does it also entail losses? Using functional magnetic resonance imaging, we measured brain responses to spoken and written language, visual faces, houses, tools, and checkers in adults of variable literacy (10 were illiterate, 22 became literate as adults, and 31 were literate in childhood). As literacy enhanced the left fusiform activation evoked by writing, it induced a small competition with faces at this location, but also broadly enhanced visual responses in fusiform and occipital cortex, extending to area V1. Literacy also enhanced phonological activation to speech in the planum temporale and afforded a top-down activation of orthography from spoken inputs. Most changes occurred even when literacy was acquired in adulthood, emphasizing that both childhood and adult education can profoundly refine cortical organization.
                Bookmark

                Author and article information

                Journal
                Front Psychol
                Front. Psychology
                Frontiers in Psychology
                Frontiers Research Foundation
                1664-1078
                11 October 2011
                2011
                : 2
                : 239
                Affiliations
                [1] 1simpleDepartment of Pediatrics, Center for the Study of Learning, Georgetown University Washington, DC, USA
                [2] 2simpleDepartment of Neurology, Georgetown University Washington, DC, USA
                [3] 3simpleDepartment of Cognitive Science, Johns Hopkins University Baltimore, MD, USA
                Author notes

                Edited by: Albert Costa, University Pompeu Fabra, Spain

                Reviewed by: Pelagie M. Beeson, University of Arizona, USA; Steven Z. Rapcsak, University of Arizona, USA

                *Correspondence: Brenda Rapp, Department of Cognitive Science, Johns Hopkins University, 135 Krieger Hall, 3400 North Charles Street, Baltimore, MD 21218-2685, USA. e-mail: rapp@ 123456cogsci.jhu.edu

                This article was submitted to Frontiers in Language Sciences, a specialty of Frontiers in Psychology.

                Article
                10.3389/fpsyg.2011.00239
                3190188
                22013427
                e1de0485-5c77-4715-84d3-803a69c138e7
                Copyright © 2011 Purcell, Turkeltaub, Eden and Rapp.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 18 April 2011
                : 01 September 2011
                Page count
                Figures: 3, Tables: 4, Equations: 0, References: 109, Pages: 16, Words: 14119
                Categories
                Psychology
                Review Article

                Clinical Psychology & Psychiatry
                writing,fmri,dysgraphia,meta-analysis,fusiform gyrus,spelling,angular,intraparietal sulcus

                Comments

                Comment on this article