27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prevention of hepatorenal toxicity with Sonchus asper in gentamicin treated rats

      research-article
      1 , , 1 , 1
      BMC Complementary and Alternative Medicine
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sonchus asper possesses antioxidant capacity and is used in liver and kidney disorders. We have investigated the preventive effect of methanolic extract of Sonchus asper (SAME) on the gentamicin induced alterations in biochemical and morphological parameters in liver and kidneys of Sprague-Dawley male rat.

          Methods

          Acute oral toxicity studies were performed for selecting the therapeutic dose of SAME. 30 Sprague-Dawley male rats were equally divided into five groups with 06 animals in each. Group I received saline (0.5 ml/kg bw; 0.9% NaCl) while Group II administered with gentamicin 0.5 ml (100 mg/kg bw; i.p.) for ten days. Animals of Group III and Group IV received gentamicin and SAME 0.5 ml at a dose of 100 mg/kg bw and 200 mg/kg bw, respectively while Group V received only SAME at a dose of 200 mg/kg bw. Biochemical parameters including aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), γ-glutamyltransferase (γ-GT), total cholesterol, triglycerides, total protein, albumin, creatinine, blood urea nitrogen (BUN), total bilirubin and direct bilirubin were determined in serum collected from various groups. Urinary out puts were measured in each group and also assessed for the level of protein and glucose. Lipid peroxides (TBARS), glutathione (GSH), DNA injuries and activities of antioxidant enzymes; catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) were determined in liver and renal samples. Histopathological studies of liver and kidneys were also carried out.

          Results

          On the basis of acute oral toxicity studies, 2000 mg/kg bw did not induce any toxicity in rats, 1/10 th of the dose was selected for preventive treatment. Gentamicin increased the level of serum biomarkers; AST, ALT, ALP, LDH, γ-GT, total cholesterol, triglycerides, total protein, albumin, creatinine, BUN, total and direct bilirubin; as were the urinary level of protein, glucose, and urinary output. Lipid peroxidation (TBARS) and DNA injuries increased while GSH contents and activities of antioxidant enzymes; CAT, POD, SOD decreased with gentamicin in liver and kidney samples. SAME administration, dose dependently, prevented the alteration in biochemical parameters and were supported by low level of tubular and glomerular injuries induced with gentamicin.

          Conclusion

          These results suggested the preventive role of SAME for gentamicin induced toxicity that could be attributed by phytochemicals having antioxidant and free radical scavenging properties.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: not found
          • Article: not found

          Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biochemistry and medical significance of the flavonoids.

            Flavonoids are plant pigments that are synthesised from phenylalanine, generally display marvelous colors known from flower petals, mostly emit brilliant fluorescence when they are excited by UV light, and are ubiquitous to green plant cells. The flavonoids are used by botanists for taxonomical classification. They regulate plant growth by inhibition of the exocytosis of the auxin indolyl acetic acid, as well as by induction of gene expression, and they influence other biological cells in numerous ways. Flavonoids inhibit or kill many bacterial strains, inhibit important viral enzymes, such as reverse transcriptase and protease, and destroy some pathogenic protozoans. Yet, their toxicity to animal cells is low. Flavonoids are major functional components of many herbal and insect preparations for medical use, e.g., propolis (bee's glue) and honey, which have been used since ancient times. The daily intake of flavonoids with normal food, especially fruit and vegetables, is 1-2 g. Modern authorised physicians are increasing their use of pure flavonoids to treat many important common diseases, due to their proven ability to inhibit specific enzymes, to simulate some hormones and neurotransmitters, and to scavenge free radicals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines.

              Colorectal cancer (CRC) is the second most fatal and the third most diagnosed type of cancer worldwide. Despite having multifactorial causes, most CRC cases are mainly determined by dietary factors. In recent years, a large number of studies have attributed a protective effect to polyphenols and foods containing these compounds (fruits and vegetables) against CRC. Indeed, polyphenols have been reported to interfere with cancer initiation, promotion, and progression, acting as chemopreventive agents. The aim of this review is to summarize the main chemopreventive properties of some polyphenols (quercetin, rutin, myricetin, chrysin, epigallocatechin-3-gallate, epicatechin, catechin, resveratrol, and xanthohumol) against CRC, observed in cell culture models. From the data reviewed in this article, it can be concluded that these compounds inhibit cell growth, by inducing cell cycle arrest and/or apoptosis; inhibit proliferation, angiogenesis, and/or metastasis; and exhibit anti-inflammatory and/or antioxidant effects. In turn, these effects involve multiple molecular and biochemical mechanisms of action, which are still not completely characterized. Thus, caution is mandatory when attempting to extrapolate the observations obtained in CRC cell line studies to humans. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central
                1472-6882
                2011
                15 November 2011
                : 11
                : 113
                Affiliations
                [1 ]Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 44000, Pakistan
                Article
                1472-6882-11-113
                10.1186/1472-6882-11-113
                3305921
                22082144
                e1e059e0-f30d-4d46-922f-4c9573514dc1
                Copyright ©2011 Khan et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 July 2011
                : 15 November 2011
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article