8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enterococcus faecalis CRISPR-Cas Is a Robust Barrier to Conjugative Antibiotic Resistance Dissemination in the Murine Intestine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CRISPR-Cas is a type of immune system in bacteria that is hypothesized to be a natural impediment to the spread of antibiotic resistance genes. In this study, we directly assessed the impact of CRISPR-Cas on antibiotic resistance dissemination in the mammalian intestine and under different in vitro conditions. We observed a robust effect of CRISPR-Cas on in vivo but not in vitro dissemination of antibiotic resistance plasmids in the native mammalian intestinal colonizer Enterococcus faecalis. We conclude that standard in vitro experiments currently do not appropriately model the in vivo conditions where antibiotic resistance dissemination occurs between E. faecalis strains in the intestine. Moreover, our results demonstrate that CRISPR-Cas present in native members of the mammalian intestinal microbiota can block the spread of antibiotic resistance plasmids.

          ABSTRACT

          CRISPR-Cas systems are barriers to horizontal gene transfer (HGT) in bacteria. Little is known about CRISPR-Cas interactions with conjugative plasmids, and studies investigating CRISPR-Cas/plasmid interactions in in vivo models relevant to infectious disease are lacking. These are significant gaps in knowledge because conjugative plasmids disseminate antibiotic resistance genes among pathogens in vivo, and it is essential to identify strategies to reduce the spread of these elements. We use enterococci as models to understand the interactions of CRISPR-Cas with conjugative plasmids. Enterococcus faecalis is a native colonizer of the mammalian intestine and harbors pheromone-responsive plasmids (PRPs). PRPs mediate inter- and intraspecies transfer of antibiotic resistance genes. We assessed E. faecalis CRISPR-Cas anti-PRP activity in the mouse intestine and under different in vitro conditions. We observed striking differences in CRISPR-Cas efficiency in vitro versus in vivo. With few exceptions, CRISPR-Cas blocked intestinal PRP dissemination, while in vitro, the PRP frequently escaped CRISPR-Cas defense. Our results further the understanding of CRISPR-Cas biology by demonstrating that standard in vitro experiments do not adequately model the in vivo antiplasmid activity of CRISPR-Cas. Additionally, our work identifies several variables that impact the apparent in vitro antiplasmid activity of CRISPR-Cas, including planktonic versus biofilm settings, different donor-to-recipient ratios, production of a plasmid-encoded bacteriocin, and the time point at which matings are sampled. Our results are clinically significant because they demonstrate that barriers to HGT encoded by normal (healthy) human microbiota can have significant impacts on in vivo antibiotic resistance dissemination.

          IMPORTANCE CRISPR-Cas is a type of immune system in bacteria that is hypothesized to be a natural impediment to the spread of antibiotic resistance genes. In this study, we directly assessed the impact of CRISPR-Cas on antibiotic resistance dissemination in the mammalian intestine and under different in vitro conditions. We observed a robust effect of CRISPR-Cas on in vivo but not in vitro dissemination of antibiotic resistance plasmids in the native mammalian intestinal colonizer Enterococcus faecalis. We conclude that standard in vitro experiments currently do not appropriately model the in vivo conditions where antibiotic resistance dissemination occurs between E. faecalis strains in the intestine. Moreover, our results demonstrate that CRISPR-Cas present in native members of the mammalian intestinal microbiota can block the spread of antibiotic resistance plasmids.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.

          Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.

            Numerous prokaryote genomes contain structures known as clustered regularly interspaced short palindromic repeats (CRISPRs), composed of 25-50 bp repeats separated by unique sequence spacers of similar length. CRISPR structures are found in the vicinity of four genes named cas1 to cas4. In silico analysis revealed another cluster of three genes associated with CRISPR structures in many bacterial species, named here as cas1B, cas5 and cas6, and also revealed a certain number of spacers that have homology with extant genes, most frequently derived from phages, but also derived from other extrachromosomal elements. Sequence analysis of CRISPR structures from 24 strains of Streptococcus thermophilus and Streptococcus vestibularis confirmed the homology of spacers with extrachromosomal elements. Phage sensitivity of S. thermophilus strains appears to be correlated with the number of spacers in the CRISPR locus the strain carries. The authors suggest that the spacer elements are the traces of past invasions by extrachromosomal elements, and hypothesize that they provide the cell immunity against phage infection, and more generally foreign DNA expression, by coding an anti-sense RNA. The presence of gene fragments in CRISPR structures and the nuclease motifs in cas genes of both cluster types suggests that CRISPR formation involves a DNA degradation step.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacteriocin production augments niche competition by enterococci in the mammalian GI tract

              Enterococcus faecalis (EF) is both a common commensal of the human gastrointestinal tract (GI) and a leading cause of hospital acquired infections 1 . Systemic infections with multi-drug resistant enterococci occur subsequent to GI colonization 2 . Preventing colonization by multi-drug resistant EF could therefore be a valuable approach to limiting infection. However, little is known about mechanisms EF uses to colonize and compete for stable gastrointestinal niches. Pheromone-responsive, conjugative plasmids encoding bacteriocins are common among enterococcal strains 3 , and could modulate niche competition among enterococci or between enterococci and the intestinal microbiota. We developed a model of mouse gut colonization with EF without disrupting the microbiota, to evaluate the role of the conjugative plasmid pPD1 expressing bacteriocin 21 4 on enterococcal colonization. Here we show that EF harboring pPD1 replaces indigenous enterococci and outcompetes EF lacking pPD1. Furthermore, in the intestine, pPD1 is transferred to other EF strains by conjugation, enhancing their survival. Moreover, colonization with an EF strain carrying a conjugation-defective pPD1 mutant resulted in clearance of vancomycin-resistant enterococci, without plasmid transfer. Therefore bacteriocin expression by commensal bacteria can influence niche-competition in the GI tract, and bacteriocins, delivered by commensals that occupy a precise intestinal bacterial niche, may be an effective therapeutic approach to specifically eliminate intestinal colonization by multi-drug resistant bacteria, without profound disruption of the indigenous microbiota.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mSphere
                mSphere
                msph
                msph
                mSphere
                mSphere
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2379-5042
                24 July 2019
                Jul-Aug 2019
                : 4
                : 4
                : e00464-19
                Affiliations
                [a ]Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
                [b ]Department of Immunology & Microbiology, The University of Colorado School of Medicine, Aurora, Colorado, USA
                University of Iowa
                Author notes
                Address correspondence to Breck A. Duerkop, breck.duerkop@ 123456ucdenver.edu , or Kelli L. Palmer, kelli.palmer@ 123456utdallas.edu .

                Citation Price VJ, McBride SW, Hullahalli K, Chatterjee A, Duerkop BA, Palmer KL. 2019. Enterococcus faecalis CRISPR-Cas is a robust barrier to conjugative antibiotic resistance dissemination in the murine intestine. mSphere 4:e00464-19. https://doi.org/10.1128/mSphere.00464-19.

                Author information
                https://orcid.org/0000-0003-4030-9822
                https://orcid.org/0000-0002-7343-9271
                Article
                mSphere00464-19
                10.1128/mSphere.00464-19
                6656873
                31341074
                e1f3324f-c2be-47b4-8fb6-33cc92e8bc0c
                Copyright © 2019 Price et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 27 June 2019
                : 29 June 2019
                Page count
                supplementary-material: 4, Figures: 5, Tables: 1, Equations: 0, References: 37, Pages: 11, Words: 7175
                Funding
                Funded by: HHS | National Institutes of Health (NIH), https://doi.org/10.13039/100000002;
                Award ID: R01AI116610
                Award Recipient :
                Funded by: HHS | National Institutes of Health (NIH), https://doi.org/10.13039/100000002;
                Award ID: K01DK102436
                Award ID: R01AI141479
                Award Recipient :
                Categories
                Research Article
                Ecological and Evolutionary Science
                Custom metadata
                July/August 2019

                crispr-cas,enterococcus faecalis,antibiotic resistance,intestinal colonization,plasmids

                Comments

                Comment on this article