Blog
About

112
views
1
recommends
+1 Recommend
1 collections
    9
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dynamic remodeling of the extracellular matrix (ECM) is essential for development, wound healing and normal organ homeostasis. Life-threatening pathological conditions arise when ECM remodeling becomes excessive or uncontrolled. In this Perspective, we focus on how ECM remodeling contributes to fibrotic diseases and cancer, which both present challenging obstacles with respect to clinical treatment, to illustrate the importance and complexity of cell-ECM interactions in the pathogenesis of these conditions. Fibrotic diseases, which include pulmonary fibrosis, systemic sclerosis, liver cirrhosis and cardiovascular disease, account for over 45% of deaths in the developed world. ECM remodeling is also crucial for tumor malignancy and metastatic progression, which ultimately cause over 90% of deaths from cancer. Here, we discuss current methodologies and models for understanding and quantifying the impact of environmental cues provided by the ECM on disease progression, and how improving our understanding of ECM remodeling in these pathological conditions is crucial for uncovering novel therapeutic targets and treatment strategies. This can only be achieved through the use of appropriate in vitro and in vivo models to mimic disease, and with technologies that enable accurate monitoring, imaging and quantification of the ECM.

          Related collections

          Most cited references 171

          • Record: found
          • Abstract: found
          • Article: not found

          Matrix elasticity directs stem cell lineage specification.

          Microenvironments appear important in stem cell lineage specification but can be difficult to adequately characterize or control with soft tissues. Naive mesenchymal stem cells (MSCs) are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity. Soft matrices that mimic brain are neurogenic, stiffer matrices that mimic muscle are myogenic, and comparatively rigid matrices that mimic collagenous bone prove osteogenic. During the initial week in culture, reprogramming of these lineages is possible with addition of soluble induction factors, but after several weeks in culture, the cells commit to the lineage specified by matrix elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types. Inhibition of nonmuscle myosin II blocks all elasticity-directed lineage specification-without strongly perturbing many other aspects of cell function and shape. The results have significant implications for understanding physical effects of the in vivo microenvironment and also for therapeutic uses of stem cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New functions for the matrix metalloproteinases in cancer progression.

            Matrix metalloproteinases (MMPs) have long been associated with cancer-cell invasion and metastasis. This provided the rationale for clinical trials of MMP inhibitors, unfortunately with disappointing results. We now know, however, that the MMPs have functions other than promotion of invasion, have substrates other than components of the extracellular matrix, and that they function before invasion in the development of cancer. With this knowledge in hand, can we rethink the use of MMP inhibitors in the clinic?
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Matrix metalloproteinases: regulators of the tumor microenvironment.

              Extracellular proteolysis mediates tissue homeostasis. In cancer, altered proteolysis leads to unregulated tumor growth, tissue remodeling, inflammation, tissue invasion, and metastasis. The matrix metalloproteinases (MMPs) represent the most prominent family of proteinases associated with tumorigenesis. Recent technological developments have markedly advanced our understanding of MMPs as modulators of the tumor microenvironment. In addition to their role in extracellular matrix turnover and cancer cell migration, MMPs regulate signaling pathways that control cell growth, inflammation, or angiogenesis and may even work in a nonproteolytic manner. These aspects of MMP function are reorienting our approaches to cancer therapy. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Dis Model Mech
                dmm
                DMM
                Disease Models & Mechanisms
                The Company of Biologists Limited
                1754-8403
                1754-8411
                March 2011
                : 4
                : 2
                : 165-178
                Affiliations
                [1 ]Cancer Research UK Tumour Cell Signalling Unit, Section of Cell and Molecular Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
                Author notes
                [* ]Author for correspondence ( janine.erler@ 123456icr.ac.uk )
                0040165
                10.1242/dmm.004077
                3046088
                21324931
                © 2011. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License ( http://creativecommons.org/licenses/by-nc-sa/3.0), which permits unrestricted non-commercial use, distribution and reproduction in any medium provided that the original work is properly cited and all further distributions of the work or adaptation are subject to the same Creative Commons License terms.

                Product
                Categories
                Perspective

                Molecular medicine

                Comments

                Comment on this article