Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Computed Tomography: Return on Investment and Regional Disparity Factor Analysis

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The number of computed tomography (CT) systems in operation in Japan is approximately 4.3 times higher than that of the OECD average. However, CT systems are expensive, and thus, a heavy financial burden for hospital management. We calculate the annual net profits from CT introduction in Japan for single-slice CT (SSCT), multi-slice CT (MSCT), number of hospital beds, and prefecture. We also analyze the factors that affect CT profitability. First, the annual income per CT in operation is estimated for 2011. Second, the annual costs per CT are calculated as the sum of depreciation, maintenance, and labor costs. Finally, the annual net profits per CT are estimated for SSCT and MSCT, the number of hospital beds, and prefecture. A correlation analysis between the annual net profits, population, and number of physicians per CT equipment is used to determine the determinants of the net CT profits by prefecture. Our results show that, for hospitals with fewer than 100 beds, the annual net CT profits are higher for SSCT than MSCT, and vice versa for hospitals with at least 100 beds. Both SSCT and MSCT increased profits as the number of hospital beds increased. The annual net CT profits per prefecture are USD −12,105 for SSCT and USD 87,233 for MSCT, on average. The annual net profits per prefecture and population per CT show positive correlations with both SSCT and MSCT, as do the annual net profits per prefecture and number of physicians per CT. Thus, choosing high-performance MSCT is advantageous in terms of profitability in facilities with at least 100 beds. Additionally, CT profitability presumably affects the balance between the number of introduced CTs, population per CT, and number of physicians per CT.

      Related collections

      Most cited references 20

      • Record: found
      • Abstract: found
      • Article: not found

      Reduced lung-cancer mortality with low-dose computed tomographic screening.

      The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer. From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02). Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385.).
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Survival of patients with stage I lung cancer detected on CT screening.

        The outcome among patients with clinical stage I cancer that is detected on annual screening using spiral computed tomography (CT) is unknown. In a large collaborative study, we screened 31,567 asymptomatic persons at risk for lung cancer using low-dose CT from 1993 through 2005, and from 1994 through 2005, 27,456 repeated screenings were performed 7 to 18 months after the previous screening. We estimated the 10-year lung-cancer-specific survival rate among participants with clinical stage I lung cancer that was detected on CT screening and diagnosed by biopsy, regardless of the type of treatment received, and among those who underwent surgical resection of clinical stage I cancer within 1 month. A pathology panel reviewed the surgical specimens obtained from participants who underwent resection. Screening resulted in a diagnosis of lung cancer in 484 participants. Of these participants, 412 (85%) had clinical stage I lung cancer, and the estimated 10-year survival rate was 88% in this subgroup (95% confidence interval [CI], 84 to 91). Among the 302 participants with clinical stage I cancer who underwent surgical resection within 1 month after diagnosis, the survival rate was 92% (95% CI, 88 to 95). The 8 participants with clinical stage I cancer who did not receive treatment died within 5 years after diagnosis. Annual spiral CT screening can detect lung cancer that is curable. Copyright 2006 Massachusetts Medical Society.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study.

          CT imaging of head-injured children has risks of radiation-induced malignancy. Our aim was to identify children at very low risk of clinically-important traumatic brain injuries (ciTBI) for whom CT might be unnecessary. We enrolled patients younger than 18 years presenting within 24 h of head trauma with Glasgow Coma Scale scores of 14-15 in 25 North American emergency departments. We derived and validated age-specific prediction rules for ciTBI (death from traumatic brain injury, neurosurgery, intubation >24 h, or hospital admission >or=2 nights). We enrolled and analysed 42 412 children (derivation and validation populations: 8502 and 2216 younger than 2 years, and 25 283 and 6411 aged 2 years and older). We obtained CT scans on 14 969 (35.3%); ciTBIs occurred in 376 (0.9%), and 60 (0.1%) underwent neurosurgery. In the validation population, the prediction rule for children younger than 2 years (normal mental status, no scalp haematoma except frontal, no loss of consciousness or loss of consciousness for less than 5 s, non-severe injury mechanism, no palpable skull fracture, and acting normally according to the parents) had a negative predictive value for ciTBI of 1176/1176 (100.0%, 95% CI 99.7-100 0) and sensitivity of 25/25 (100%, 86.3-100.0). 167 (24.1%) of 694 CT-imaged patients younger than 2 years were in this low-risk group. The prediction rule for children aged 2 years and older (normal mental status, no loss of consciousness, no vomiting, non-severe injury mechanism, no signs of basilar skull fracture, and no severe headache) had a negative predictive value of 3798/3800 (99.95%, 99.81-99.99) and sensitivity of 61/63 (96.8%, 89.0-99.6). 446 (20.1%) of 2223 CT-imaged patients aged 2 years and older were in this low-risk group. Neither rule missed neurosurgery in validation populations. These validated prediction rules identified children at very low risk of ciTBIs for whom CT can routinely be obviated. The Emergency Medical Services for Children Programme of the Maternal and Child Health Bureau, and the Maternal and Child Health Bureau Research Programme, Health Resources and Services Administration, US Department of Health and Human Services.
            Bookmark

            Author and article information

            Affiliations
            1Faculty of Health Sciences, Butsuryo College of Osaka , Osaka, Japan
            2Department of Public Health, Health Management and Policy, y , Nara, Japan
            Author notes

            Edited by: Obinna E. Onwujekwe, University of Nigeria, Nsukka, Nigeria

            Reviewed by: Brian Godman, Karolinska Institute (KI), Sweden; Nemanja Rancic, Military Medical Academy, Serbia

            *Correspondence: Shinya Imai imai@ 123456butsuryo.ac.jp

            This article was submitted to Health Economics, a section of the journal Frontiers in Public Health

            Contributors
            Journal
            Front Public Health
            Front Public Health
            Front. Public Health
            Frontiers in Public Health
            Frontiers Media S.A.
            2296-2565
            10 January 2019
            2018
            : 6
            6335945
            10.3389/fpubh.2018.00380
            Copyright © 2019 Imai, Akahane and Imamura.

            This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

            Counts
            Figures: 1, Tables: 5, Equations: 0, References: 26, Pages: 8, Words: 5305
            Categories
            Public Health
            Original Research

            Comments

            Comment on this article