41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Place of RNA in the Origin and Early Evolution of the Genetic Machinery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The extant genetic machinery revolves around three interrelated polymers: RNA, DNA and proteins. Two evolutionary views approach this vital connection from opposite perspectives. The RNA World theory posits that life began in a cold prebiotic broth of monomers with the de novo emergence of replicating RNA as functionally self-contained polymer and that subsequent evolution is characterized by RNA → DNA memory takeover and ribozyme → enzyme catalyst takeover. The FeS World theory posits that life began as an autotrophic metabolism in hot volcanic-hydrothermal fluids and evolved with organic products turning into ligands for transition metal catalysts thereby eliciting feedback and feed-forward effects. In this latter context it is posited that the three polymers of the genetic machinery essentially coevolved from monomers through oligomers to polymers, operating functionally first as ligands for ligand-accelerated transition metal catalysis with later addition of base stacking and base pairing, whereby the functional dichotomy between hereditary DNA with stability on geologic time scales and transient, catalytic RNA with stability on metabolic time scales existed since the dawn of the genetic machinery. Both approaches are assessed comparatively for chemical soundness.

          Related collections

          Most cited references172

          • Record: found
          • Abstract: found
          • Article: not found

          The structural basis of ribosome activity in peptide bond synthesis.

          Using the atomic structures of the large ribosomal subunit from Haloarcula marismortui and its complexes with two substrate analogs, we establish that the ribosome is a ribozyme and address the catalytic properties of its all-RNA active site. Both substrate analogs are contacted exclusively by conserved ribosomal RNA (rRNA) residues from domain V of 23S rRNA; there are no protein side-chain atoms closer than about 18 angstroms to the peptide bond being synthesized. The mechanism of peptide bond synthesis appears to resemble the reverse of the acylation step in serine proteases, with the base of A2486 (A2451 in Escherichia coli) playing the same general base role as histidine-57 in chymotrypsin. The unusual pK(a) (where K(a) is the acid dissociation constant) required for A2486 to perform this function may derive in part from its hydrogen bonding to G2482 (G2447 in E. coli), which also interacts with a buried phosphate that could stabilize unusual tautomers of these two bases. The polypeptide exit tunnel is largely formed by RNA but has significant contributions from proteins L4, L22, and L39e, and its exit is encircled by proteins L19, L22, L23, L24, L29, and L31e.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aminoacyl-tRNA synthesis.

            Aminoacyl-tRNAs are substrates for translation and are pivotal in determining how the genetic code is interpreted as amino acids. The function of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anticodon. This is primarily achieved by the direct attachment of an amino acid to the corresponding tRNA by an aminoacyl-tRNA synthetase, although intrinsic proofreading and extrinsic editing are also essential in several cases. Recent studies of aminoacyl-tRNA synthesis, mainly prompted by the advent of whole genome sequencing and the availability of a vast body of structural data, have led to an expanded and more detailed picture of how aminoacyl-tRNAs are synthesized. This article reviews current knowledge of the biochemical, structural, and evolutionary facets of aminoacyl-tRNA synthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation.

              The review describes four flavin-containing cytoplasmatic multienzyme complexes from anaerobic bacteria and archaea that catalyze the reduction of the low potential ferredoxin by electron donors with higher potentials, such as NAD(P)H or H(2) at ≤ 100 kPa. These endergonic reactions are driven by concomitant oxidation of the same donor with higher potential acceptors such as crotonyl-CoA, NAD(+) or heterodisulfide (CoM-S-S-CoB). The process called flavin-based electron bifurcation (FBEB) can be regarded as a third mode of energy conservation in addition to substrate level phosphorylation (SLP) and electron transport phosphorylation (ETP). FBEB has been detected in the clostridial butyryl-CoA dehydrogenase/electron transferring flavoprotein complex (BcdA-EtfBC), the multisubunit [FeFe]hydrogenase from Thermotoga maritima (HydABC) and from acetogenic bacteria, the [NiFe]hydrogenase/heterodisulfide reductase (MvhADG-HdrABC) from methanogenic archaea, and the transhydrogenase (NfnAB) from many Gram positive and Gram negative bacteria and from anaerobic archaea. The Bcd/EtfBC complex that catalyzes electron bifurcation from NADH to the low potential ferredoxin and to the high potential crotonyl-CoA has already been studied in some detail. The bifurcating protein most likely is EtfBC, which in each subunit (βγ) contains one FAD. In analogy to the bifurcating complex III of the mitochondrial respiratory chain and with the help of the structure of the human ETF, we propose a conformational change by which γ-FADH(-) in EtfBC approaches β-FAD to enable the bifurcating one-electron transfer. The ferredoxin reduced in one of the four electron bifurcating reactions can regenerate H(2) or NADPH, reduce CO(2) in acetogenic bacteria and methanogenic archaea, or is converted to ΔμH(+)/Na(+) by the membrane-associated enzyme complexes Rnf and Ech, whereby NADH and H(2) are recycled, respectively. The mainly bacterial Rnf complexes couple ferredoxin oxidation by NAD(+) with proton/sodium ion translocation and the more diverse energy converting [NiFe]hydrogenases (Ech) do the same, whereby NAD(+) is replaced by H(+). Many organisms also use Rnf and Ech in the reverse direction to reduce ferredoxin driven by ΔμH(+)/Na(+). Finally examples are shown, in which the four bifurcating multienzyme complexes alone or together with Rnf and Ech are integrated into energy metabolisms of nine anaerobes. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: External Editor
                Journal
                Life (Basel)
                Life (Basel)
                life
                Life
                MDPI
                2075-1729
                19 December 2014
                December 2014
                : 4
                : 4
                : 1050-1091
                Affiliations
                209 Mill Race Drive, Chapel Hill, NC 27514, USA; E-Mail: gwmunich@ 123456bellsouth.net ; Tel.: +1-919-942-5943; Fax: +1-919-929-9383
                Article
                life-04-01050
                10.3390/life4041050
                4284482
                25532530
                e20a2735-2ee2-4695-9bbe-76982d3d9ac6
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 October 2014
                : 02 December 2014
                : 09 December 2014
                Categories
                Article

                last universal common ancestor (luca),thermal evolution,ligand-accelerated catalysis,peptide cycle,pre-ribosome,wong theory,urzymes,all-purine rna,trionucleic acid,flow setting

                Comments

                Comment on this article