1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transition Metal−Peptide Binding Studied by Metal-Catalyzed Oxidation Reactions and Mass Spectrometry

      , ,
      Analytical Chemistry
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have identified conditions that allow metal-catalyzed oxidation (MCO) reactions and mass spectrometry (MS) to correctly identify binding sites of first-row transition metal ions to model peptides. This work extends the applicability of the MCO/MS method to metals other than Cu(II). When the appropriate reducing agent (ascorbate, 10 mM) and oxidizing agent concentrations (1 mM persulfate, atmospheric O2, or both) are used, metal-bound amino acids can be sufficiently and specifically oxidized for clear identification by MS. The MCO reactions with Mn(II), Fe(II), Co(II), and Ni(II) occur to lesser extents than with Cu(II), but oxidation is still extensive enough to allow easy identification of the metal-bound residues. With the exception of aspartic acid, the known metal-binding amino acids of angiotensin I and bacitracin A are oxidized, while no oxidation is observed at nonbinding residues. Failure to oxidize aspartic acid is likely due to the relatively slow reactivity of its carboxylic acid side chain with reactive oxygen species, suggesting that the current MCO/MS protocol is transparent to such acidic residues. Overall, this study indicates that, just as is possible for Cu(II), the MCO/MS method should be suitable for determining the Mn(II)-, Fe(II)-, Co(II)-, and Ni(II)-binding sites of metalloproteins.

          Related collections

          Author and article information

          Journal
          Analytical Chemistry
          Anal. Chem.
          American Chemical Society (ACS)
          0003-2700
          1520-6882
          April 2006
          April 2006
          : 78
          : 7
          : 2432-2438
          Article
          10.1021/ac051983r
          16579630
          e2186943-3002-4ce6-b56a-84b78d71db00
          © 2006
          History

          Comments

          Comment on this article