2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Farmers’ knowledge, perception and management practices of fall armyworm (Spodoptera frugiperda Smith) in Manica province, Mozambique

      , ,

      NeoBiota

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aimed to gather information about farmers’ knowledge, perception and management practices of the newly introduced insect pest, the fall armyworm Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in Manica province, Mozambique. A total of 200 smallholder farmers with experience in maize cultivation were surveyed using a semi-structured questionnaire. The survey was conducted between May and August 2019 in four districts: Macate, Manica, Sussundenga and Vanduzi. Most farmers were unable to morphologically identify fall armyworm (FAW) (from 93.9% in Vanduzi to 98.0% in Manica). Most farmers have experienced FAW damage in their farms (from 92% in Macate to 98.0% in Manica). Maize is mostly planted in October and November (from 44.0% in Sussundenga to 60.0% of farmers in Manica), but the highest infestation period is believed to be between November and February. With the exception of Vanduzi where 65.3% of farmers apply insecticides, most farmers in other districts do not use any method to control FAW (from 60.8% in Macate to 88.0% in Manica and Sussundenga respectively). Among those applying insecticides, from 65.0% in Manica to 75.0% in Vanduzi have confidence in the efficiency of the insecticides being used against FAW. Most farmers reported an increase in the spread of FAW. The lack of financial resources is reported as the main constraint in the fight against FAW. This study is the first of its nature in the province of Manica and provides valuable information that may support extension services and researchers when designing FAW management options for local smallholder farmers.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa

          The fall armyworm Spodoptera frugiperda is a prime noctuid pest of maize on the American continents where it has remained confined despite occasional interceptions by European quarantine services in recent years. The pest has currently become a new invasive species in West and Central Africa where outbreaks were recorded for the first time in early 2016. The presence of at least two distinct haplotypes within samples collected on maize in Nigeria and São Tomé suggests multiple introductions into the African continent. Implications of this new threat to the maize crop in tropical Africa are briefly discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pest management strategies in traditional agriculture: an African perspective.

            African agriculture is largely traditional--characterized by a large number of smallholdings of no more than one ha per household. Crop production takes place under extremely variable agro-ecological conditions, with annual rainfall ranging from 250 to 750 mm in the Sahel in the northwest and in the semi-arid east and south, to 1500 to 4000 mm in the forest zones in the central west. Farmers often select well-adapted, stable crop varieties, and cropping systems are such that two or more crops are grown in the same field at the same time. These diverse traditional systems enhance natural enemy abundance and generally keep pest numbers at low levels. Pest management practice in traditional agriculture is a built-in process in the overall crop production system rather than a separate well-defined activity. Increased population pressure and the resulting demand for increased crop production in Africa have necessitated agricultural expansion with the concomitant decline in the overall biodiversity. Increases in plant material movement in turn facilitated the accidental introduction of foreign pests. At present about two dozen arthropod pests, both introduced and native, are recognized as one of the major constraints to agricultural production and productivity in Africa. Although yield losses of 0% to 100% have been observed on-station, the economic significance of the majority of pests under farmers' production conditions is not adequately understood. Economic and social constraints have kept pesticide use in Africa the lowest among all the world regions. The bulk of pesticides are applied mostly against pests of commercial crops such as cotton, vegetables, coffee, and cocoa, and to some extent for combating outbreaks of migratory pests such as the locusts. The majority of African farmers still rely on indigenous pest management approaches to manage pest problems, although many government extension programs encourage the use of pesticides. The current pest management research activities carried out by national or international agricultural research programs in Africa focus on classical biological control and host plant resistance breeding. With the exception of classical biological control of the cassava mealybug, research results have not been widely adopted. This could be due to African farmers facing heterogeneous conditions, not needing fixed prescriptions or one ideal variety but a number of options and genotypes to choose from. Indigenous pest management knowledge is site-specific and should be the basis for developing integrated pest management (IPM) techniques. Farmers often lack the biological and ecological information necessary to develop better pest management through experimentation. Formal research should be instrumental in providing the input necessary to facilitate participatory technology development such as that done by Farmer Field Schools, an approach now emerging in different parts of Africa.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm

              Fall armyworm, Spodopterafrugiperda , is a crop pest native to the Americas, which has invaded and spread throughout sub-Saharan Africa within two years. Recent estimates of 20–50% maize yield loss in Africa suggest severe impact on livelihoods. Fall armyworm is still infilling its potential range in Africa and could spread to other continents. In order to understand fall armyworm’s year-round, global, potential distribution, we used evidence of the effects of temperature and precipitation on fall armyworm life-history, combined with data on native and African distributions to construct Species Distribution Models (SDMs). We also investigated the strength of trade and transportation pathways that could carry fall armyworm beyond Africa. Up till now, fall armyworm has only invaded areas that have a climate similar to the native distribution, validating the use of climatic SDMs. The strongest climatic limits on fall armyworm’s year-round distribution are the coldest annual temperature and the amount of rain in the wet season. Much of sub-Saharan Africa can host year-round fall armyworm populations, but the likelihoods of colonising North Africa and seasonal migrations into Europe are hard to predict. South and Southeast Asia and Australia have climate conditions that would permit fall armyworm to invade. Current trade and transportation routes reveal Australia, China, India, Indonesia, Malaysia, Philippines and Thailand face high threat of fall armyworm invasions originating from Africa.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                NeoBiota
                NB
                Pensoft Publishers
                1314-2488
                1619-0033
                September 30 2021
                September 30 2021
                : 68
                : 127-143
                Article
                10.3897/neobiota.68.62844
                © 2021

                Comments

                Comment on this article