2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A genetic analysis identifies a haplotype at adiponectin locus: Association with obesity and type 2 diabetes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adiponectin is a prime determinant of the status of insulin resistance. Association studies between adiponectin ( ADIPOQ) gene single nucleotide polymorphisms (SNPs) and metabolic diseases have been reported earlier. However, results are ambiguous due to apparent contradictions. Hence, we investigated (1) the association between ADIPOQ SNPs: −11377C/G, +10211T/G, +45T/G and +276G/T for the risk towards type 2 diabetes (T2D) and, (2) genotype-phenotype association of these SNPs with various biochemical parameters in two cohorts. Genomic DNA of diabetic patients and controls from Gujarat and, Jammu and Kashmir (J&K) were genotyped using PCR-RFLP, TaqMan assay and MassArray. Transcript levels of ADIPOQ were assessed in visceral adipose tissue samples, and plasma adiponectin levels were estimated by qPCR and ELISA respectively. Results suggest: (i) reduced HMW adiponectin/total adiponectin ratio in Gujarat patients and its association with +10211T/G and +276G/T, and reduced ADIPOQ transcript levels in T2D, (ii) association of the above SNPs with increased FBG, BMI, TG, TC in Gujarat patients and (iii) increased GGTG haplotype in obese patients of Gujarat population and, (iv) association of −11377C/G with T2D in J&K population. Reduced HMW adiponectin, in the backdrop of obesity and ADIPOQ genetic variants might alter metabolic profile posing risk towards T2D.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population.

          An adipocyte-derived peptide, adiponectin (also known as GBP28), is decreased in subjects with type 2 diabetes. Recent genome-wide scans have mapped a diabetes susceptibility locus to chromosome 3q27, where the adiponectin gene (APM1) is located. Herein, we present evidence of an association between frequent single nucleotide polymorphisms at positions 45 and 276 in the adiponectin gene and type 2 diabetes (P = 0.003 and P = 0.002, respectively). Subjects with the G/G genotype at position 45 or the G/G genotype at position 276 had a significantly increased risk of type 2 diabetes (odds ratio 1.70 [95% CI 1.09-2.65] and 2.16 [1.22-3.95], respectively) compared with those having the T/T genotype at positions 45 and 276, respectively. In addition, the subjects with the G/G genotype at position 276 had a higher insulin resistance index than those with the T/T genotype (1.61 +/- 0.05 vs. 1.19 +/- 0.12, P = 0.001). The G allele at position 276 was linearly associated with lower plasma adiponectin levels (G/G: 10.4 +/- 0.85 microg/ml, G/T: 13.7 +/- 0.87 microg/ml, T/T: 16.6 +/- 2.24 microg/ml, P = 0.01) in subjects with higher BMIs. Based on these findings together with the observation that adiponectin improves insulin sensitivity in animal models, we conclude that the adiponectin gene may be a susceptibility gene for type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24.

            Despite recent advances in the molecular genetics of type 2 diabetes, the majority of susceptibility genes in humans remain to be identified. We therefore conducted a 10-cM genomewide search (401 microsatellite markers) for type 2 diabetes-related traits in 637 members of 143 French pedigrees ascertained through multiple diabetic siblings, to map such genes in the white population. Nonparametric two-point and multipoint linkage analyzes-using the MAPMAKER-SIBS (MLS) and MAXIMUM-BINOMIAL-LIKELIHOOD (MLB) programs for autosomal markers and the ASPEX program for chromosome X markers-were performed with six diabetic phenotypes: diabetes and diabetes or glucose intolerance (GI), as well as with each of the two phenotypes associated with normal body weight (body-mass index<27 kg/m(2)) or early age at diagnosis (<45 years). In a second step, high-resolution genetic mapping ( approximately 2 cM) was performed in regions on chromosomes 1 and 3 loci showing the strongest linkage to diabetic traits. We found evidence for linkage with diabetes or GI diagnosed at age <45 years in 92 affected sib pairs from 55 families at the D3S1580 locus on chromosome 3q27-qter using MAPMAKER-SIBS (MLS = 4.67, P=.000004), supported by the MLB statistic (MLB-LOD=3.43, P=.00003). We also found suggestive linkage between the lean diabetic status and markers APOA2-D1S484 (MLS = 3. 04, P=.00018; MLB-LOD=2.99, P=.00010) on chromosome 1q21-q24. Several other chromosomal regions showed indication of linkage with diabetic traits, including markers on chromosome 2p21-p16, 10q26, 20p, and 20q. These results (a) showed evidence for a novel susceptibility locus for type 2 diabetes in French whites on chromosome 3q27-qter and (b) confirmed the previously reported diabetes-susceptibility locus on chromosome 1q21-q24. Saturation on both chromosomes narrowed the regions of interest down to an interval of <7 cM.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome.

              Recent research has emphasized the importance of the metabolic cluster, which includes glucose intolerance, dyslipidemia, and high blood pressure, as a strong predictor of the obesity-related morbidities and premature mortality. Fundamental to this association, commonly referred to as the metabolic syndrome, is the close interaction between abdominal fat patterning, total body adiposity, and insulin resistance. As the initial step in identifying major genetic loci influencing these phenotypes, we performed a genomewide scan by using a 10-centiMorgan map in 2,209 individuals distributed over 507 nuclear Caucasian families. Pedigree-based analysis using a variance components linkage model demonstrated a quantitative trait locus (QTL) on chromosome 3 (3q27) strongly linked to six traits representing these fundamental phenotypes [logarithm of odds (lod) scores ranged from 2.4 to 3.5]. This QTL exhibited possible epistatic interaction with a second QTL on chromosome 17 (17p12) strongly linked to plasma leptin levels (lod = 5.0). Situated at these epistatic QTLs are candidate genes likely to influence two biologic precursor pathways of the metabolic syndrome.
                Bookmark

                Author and article information

                Contributors
                rasheedunnisab@yahoo.co.in
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                19 February 2020
                19 February 2020
                2020
                : 10
                : 2904
                Affiliations
                [1 ]ISNI 0000 0001 2154 7601, GRID grid.411494.d, Department of Biochemistry, Faculty of Science, , The Maharaja Sayajirao University of Baroda, ; Vadodara, 390002 Gujarat India
                [2 ]ISNI 0000 0001 2154 7601, GRID grid.411494.d, Department of Zoology, Faculty of Science, , The Maharaja Sayajirao University of Baroda, ; Vadodara, 390002 Gujarat India
                [3 ]Human Genetics Research Group, School of Biotechnology, S.M.V.D.U, Katra, 182320 Jammu and Kashmir India
                [4 ]ISNI 0000 0001 0705 4560, GRID grid.412986.0, School of Biotechnology, , University of Jammu, ; Jammu, 180001 Jammu and Kashmir India
                Author information
                http://orcid.org/0000-0002-2326-0994
                http://orcid.org/0000-0001-8857-5906
                Article
                59845
                10.1038/s41598-020-59845-z
                7031532
                32076038
                e22f68c6-be36-4ff7-a5d2-cc4eebcae6f9
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 April 2019
                : 5 February 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                gene expression,genetic association study
                Uncategorized
                gene expression, genetic association study

                Comments

                Comment on this article