163
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Correlative intravital imaging of cGMP signals and vasodilation in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cyclic guanosine monophosphate (cGMP) is an important signaling molecule and drug target in the cardiovascular system. It is well known that stimulation of the vascular nitric oxide (NO)-cGMP pathway results in vasodilation. However, the spatiotemporal dynamics of cGMP signals themselves and the cGMP concentrations within specific cardiovascular cell types in health, disease, and during pharmacotherapy with cGMP-elevating drugs are largely unknown. To facilitate the analysis of cGMP signaling in vivo, we have generated transgenic mice that express fluorescence resonance energy transfer (FRET)-based cGMP sensor proteins. Here, we describe two models of intravital FRET/cGMP imaging in the vasculature of cGMP sensor mice: (1) epifluorescence-based ratio imaging in resistance-type vessels of the cremaster muscle and (2) ratio imaging by multiphoton microscopy within the walls of subcutaneous blood vessels accessed through a dorsal skinfold chamber. Both methods allow simultaneous monitoring of NO-induced cGMP transients and vasodilation in living mice. Detailed protocols of all steps necessary to perform and evaluate intravital imaging experiments of the vasculature of anesthetized mice including surgery, imaging, and data evaluation are provided. An image segmentation approach is described to estimate FRET/cGMP changes within moving structures such as the vessel wall during vasodilation. The methods presented herein should be useful to visualize cGMP or other biochemical signals that are detectable with FRET-based biosensors, such as cyclic adenosine monophosphate or Ca 2+, and to correlate them with respective vascular responses. With further refinement and combination of transgenic mouse models and intravital imaging technologies, we envision an exciting future, in which we are able to “watch” biochemistry, (patho-)physiology, and pharmacotherapy in the context of a living mammalian organism.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Light microscopy techniques for live cell imaging.

            Since the earliest examination of cellular structures, biologists have been fascinated by observing cells using light microscopy. The advent of fluorescent labeling technologies plus the plethora of sophisticated light microscope techniques now available make studying dynamic processes in living cells almost commonplace. For anyone new to this area, however, it can be daunting to decide which techniques or equipment to try. Here, we aim to give a brief overview of the main approaches to live cell imaging, with some mention of their pros and cons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions.

              The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                14 October 2014
                2014
                : 5
                : 394
                Affiliations
                [1] 1Interfakultäres Institut für Biochemie, University of Tübingen Tübingen, Germany
                [2] 2Institut für Physiologie, Universität zu Lübeck Lübeck, Germany
                [3] 3Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
                Author notes

                Edited by: Gil Bub, University of Oxford, UK

                Reviewed by: Irena Levitan, University of Illinois at Chicago, USA; Erik Fung, University of Southern California, USA; Andreas Koschinski, University of Oxford, UK

                *Correspondence: Robert Feil, Interfakultäres Institut für Biochemie, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany e-mail: robert.feil@ 123456uni-tuebingen.de

                This article was submitted to Cardiac Electrophysiology, a section of the journal Frontiers in Physiology.

                Article
                10.3389/fphys.2014.00394
                4196583
                25352809
                e23477a3-cb80-4b4d-9c02-8b1e035353dd
                Copyright © 2014 Thunemann, Schmidt, de Wit, Han, Jain, Fukumura and Feil.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 July 2014
                : 23 September 2014
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 79, Pages: 15, Words: 11848
                Categories
                Physiology
                Methods Article

                Anatomy & Physiology
                biosensor,cremaster,cyclic gmp,dorsal skinfold chamber,fluorescence resonance energy transfer,intravital imaging,microcirculation,multiphoton microscopy

                Comments

                Comment on this article