5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Spontaneous Biomacromolecule Absorption and Long-Term Release by Graphene Oxide

      research-article

      , , , ,

      ACS Omega

      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biomacromolecule loading is the popular research in the biomedical field. To control the loading amount and releasing profile, various materials and fabrication techniques were developed. In this study, layer-by-layer assembly of multilayer films between collagen (Col) and graphene oxide (GO) was used to control the release of the loading molecule. By mixing GO into the system, ovalbumin (OVA) can be spontaneously adsorbed onto the GO sheet (denoted as GO/OVA) via the hydrophobic interaction. Two kinds of multilayer films (Col/GO/OVA and Col/GO/OVA) were fabricated. The thickness growth curve, quantitative of each layer adsorption, film morphology, stability, cell viability, and OVA release from multilayer films were investigated. The result has shown excellent film stability, macromolecule loading, and sustained release because of GO ability.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts.

          Two-dimensional carbon-based nanomaterials, including graphene oxide and graphene, are potential candidates for biomedical applications such as sensors, cell labeling, bacterial inhibition, and drug delivery. Herein, we explore the biocompatibility of graphene-related materials with controlled physical and chemical properties. The size and extent of exfoliation of graphene oxide sheets was varied by sonication intensity and time. Graphene sheets were obtained from graphene oxide by a simple (hydrazine-free) hydrothermal route. The particle size, morphology, exfoliation extent, oxygen content, and surface charge of graphene oxide and graphene were characterized by wide-angle powder X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, dynamic light scattering, and zeta-potential. One method of toxicity assessment was based on measurement of the efflux of hemoglobin from suspended red blood cells. At the smallest size, graphene oxide showed the greatest hemolytic activity, whereas aggregated graphene sheets exhibited the lowest hemolytic activity. Coating graphene oxide with chitosan nearly eliminated hemolytic activity. Together, these results demonstrate that particle size, particulate state, and oxygen content/surface charge of graphene have a strong impact on biological/toxicological responses to red blood cells. In addition, the cytotoxicity of graphene oxide and graphene sheets was investigated by measuring mitochondrial activity in adherent human skin fibroblasts using two assays. The methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, a typical nanotoxicity assay, fails to predict the toxicity of graphene oxide and graphene toxicity because of the spontaneous reduction of MTT by graphene and graphene oxide, resulting in a false positive signal. However, appropriate alternate assessments, using the water-soluble tetrazolium salt (WST-8), trypan blue exclusion, and reactive oxygen species assay reveal that the compacted graphene sheets are more damaging to mammalian fibroblasts than the less densely packed graphene oxide. Clearly, the toxicity of graphene and graphene oxide depends on the exposure environment (i.e., whether or not aggregation occurs) and mode of interaction with cells (i.e., suspension versus adherent cell types).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein corona-mediated mitigation of cytotoxicity of graphene oxide.

            Graphene is a single layer of sp(2)-bonded carbons that has unique and highly attractive electronic, mechanical, and thermal properties. Consequently, the potential impact of graphene and its derivatives (e.g., graphene oxide, GO) on human and environmental health has raised considerable concerns. In this study, we have carried out a systematic investigation on cellular effects of GO nanosheets and identified the effect of fetal bovine serum (FBS), an often-employed component in cell culture medium, on the cytotoxicity of GO. At low concentrations of FBS (1%), human cells were sensitive to the presence of GO and showed concentration-dependent cytotoxicity. Interestingly, the cytotoxicity of GO was greatly mitigated at 10% FBS, the concentration usually employed in cell medium. Our studies have demonstrated that the cytotoxicity of GO nanosheets arises from direct interactions between the cell membrane and GO nanosheets that result in physical damage to the cell membrane. This effect is largely attenuated when GO is incubated with FBS due to the extremely high protein adsorption ability of GO. The observation of this FBS-mitigated GO cytotoxicity effect may provide an alternative and convenient route to engineer nanomaterials for safe biomedical and environmental applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces.

              We present the integration of amphiphilic block copolymer micelles as nanometer-sized vehicles for hydrophobic drugs within layer-by-layer (LbL) films using alternating hydrogen bond interactions as the driving force for assembly for the first time, thus enabling the incorporation of drugs and pH-sensitive release. The film was constructed based on the hydrogen bonding between poly(acrylic acid) (PAA) as an H-bond donor and biodegradable poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) micelles as the H-bond acceptor when assembled under acidic conditions. By taking advantage of the weak interactions of the hydrogen-bonded film on hydrophobic surfaces, it is possible to generate flexible free-standing films of these materials. A free-standing micelle LbL film of (PEO-b-PCL/PAA)60 with a thickness of 3.1 microm was isolated, allowing further characterization of the bulk film properties, including morphology and phase transitions, using transmission electron microscopy and differential scanning calorimetry. Because of the sensitive nature of the hydrogen bonding employed to build the multilayers, the film can be rapidly deconstructed to release micelles upon exposure to physiological conditions. However, we could also successfully control the rate of film deconstruction by cross-linking carboxylic acid groups in PAA through thermally induced anhydride linkages, which retard the drug release to the surrounding medium to enable sustained release over multiple days. To demonstrate efficacy in delivering active therapeutics, in vitro Kirby-Bauer assays against Staphylococcus aureus were used to illustrate that the drug-loaded micelle LbL film can release significant amounts of an active antibacterial drug, triclosan, to inhibit the growth of bacteria. Because the micellar encapsulation of hydrophobic therapeutics does not require specific chemical interactions, we believe this noncovalent approach provides a new route to integrating active small, uncharged, and hydrophobic therapeutics into LbL thin films for biological and biomedical coatings.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                31 May 2018
                31 May 2018
                : 3
                : 5
                : 5903-5909
                Affiliations
                []School of Chemical Engineering and Material Science, Chung-Ang University , 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
                []School of Chemical & Biomolecular Engineering, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
                Author notes
                [* ]E-mail: jinkee.hong@ 123456yonsei.ac.kr . Phone: +82-2-2123-5748.
                Article
                10.1021/acsomega.8b00537
                6045413
                e234ffde-3304-459c-adb6-179d7b98f01e
                Copyright © 2018 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                Categories
                Article
                Custom metadata
                ao8b00537
                ao-2018-00537v

                Comments

                Comment on this article